53 research outputs found

    Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase

    Get PDF
    The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.National Institute of General Medical Sciences (U.S.) (5-R01-GM032134)United States. National Institutes of Health (T32GM008334

    Control of substrate access to the active site in methane monooxygenase

    Get PDF
    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114

    Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    Get PDF
    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

    A new monofluorinated phosphatidylcholine forms interdigitated bilayers.

    Get PDF
    16-Fluoropalmitic acid was synthesized from 16-hydroxypalmitic acid using diethylaminosulfur trifluoride. This monofluorinated fatty acid then was used to make 1-palmitoyl-2-[16-fluoropalmitoyl]-phosphatidylcholine (F-DPPC) as a fluorinated analog of dipalmitoylphosphatidylcholine (DPPC). Surprisingly, we found that the phase transition temperature (Tm) of F-DPPC occurs near 50 degrees C, approximately 10 degrees C higher than its nonfluorinated counterpart, DPPC, as judged by both differential scanning calorimetry and infrared spectroscopy. The pretransition observed for DPPC is absent in F-DPPC. A combination of REDOR, rotational-echo double-resonance, and conventional solid-state NMR experiments demonstrates that F-DPPC forms a fully interdigitated bilayer in the gel phase. Electron paramagnetic resonance experiments show that below Tm, the hydrocarbon chains of F-DPPC are more motionally restricted than those of DPPC. X-ray scattering experiments confirm that the thickness and packing of gel phase F-DPPC is similar to that of heptanetriol-induced interdigitated DPPC. F-DPPC is the first phosphoglyceride containing sn-1 and sn-2 ester-linked fatty acyl chains of equal length that spontaneously forms interdigitated bilayers in the gel state in the absence of inducing agents such as alcohols

    Structural consequences of effector protein complex formation in a diiron hydroxylase

    No full text
    Carboxylate-bridged diiron hydroxylases are multicomponent enzyme complexes responsible for the catabolism of a wide range of hydrocarbons and as such have drawn attention for their mechanism of action and potential uses in bioremediation and enzymatic synthesis. These enzyme complexes use a small molecular weight effector protein to modulate the function of the hydroxylase. However, the origin of these functional changes is poorly understood. Here, we report the structures of the biologically relevant effector protein–hydroxylase complex of toluene 4-monooxygenase in 2 redox states. The structures reveal a number of coordinated changes that occur up to 25 Å from the active site and poise the diiron center for catalysis. The results provide a structural basis for the changes observed in a number of the measurable properties associated with effector protein binding. This description provides insight into the functional role of effector protein binding in all carboxylate-bridged diiron hydroxylases
    • …
    corecore