25 research outputs found

    Effect of Radiofrequency Electromagnetic Fields on Thermal Sensitivity in the Rat

    No full text
    International audienceThe World Health Organization and the French Health Safety Agency (ANSES) recognize that the expressed pain and suffering of electromagnetic field hypersensitivity syndrome (EHS) people are a lived reality requiring daily life adaptations to cope. Mechanisms involving glutamatergic N-methyl d-aspartate (NMDA) receptors were not explored yet, despite their possible role in hypersensitivity to chemicals. Here, we hypothesized that radiofrequency electromagnetic field (RF-EMF) exposures may affect pain perception under a modulatory role played by the NMDA receptor. The rats were exposed to RF-EMF for four weeks (five times a week, at 0 (sham), 1.5 or 6 W/kg in restraint) or were cage controls (CC). Once a week, they received an NMDA or saline injection before being scored for their preference between two plates in the two-temperatures choice test: 50 °C (thermal nociception) versus 28 °C. Results in the CC and the sham rats indicated that latency to escape from heat was significantly reduced by −45% after NMDA, compared to saline treatment. Heat avoidance was significantly increased by +40% in the 6 W/kg, compared to the sham exposed groups. RF-EMF effect was abolished after NMDA treatment. In conclusion, heat avoidance was higher after high brain-averaged specific absorption rate, affording further support for possible effect of RF-EMF on pain perception. Further studies need to be performed to confirm these data

    Impact of Cerebral Radiofrequency Exposures on Oxidative Stress and Corticosterone in a Rat Model of Alzheimer's Disease

    No full text
    Background: Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia. Several studies suggested that mobile phone radiofrequency electromagnetic field (RF-EMF) exposures modified AD memory deficits in rodent models. Objective: Here we aimed to test the hypothesis that RF-EMF exposure may modify memory through corticosterone and oxidative stress in the Samaritan rat model of AD. Methods: Long-Evans male rats received intracerebroventricular infusion with ferrous sulphate, amyloid-beta 1-42 peptide, and buthionine-sufloximine (AD rats) or with vehicle (control rats). To mimic cell phone use, RF-EMF were exposed to the head for 1 month (5 days/week, in restraint). To look for hazard thresholds, high brain averaged specific absorption rates (BASAR) were tested: 1.5 W/Kg (15 min), 6 W/Kg (15 min), and 6 W/Kg (45 min). The sham group was in restraint for 45 min. Endpoints were spatial memory in the radial maze, plasmatic corticosterone, heme oxygenase-1 (HOl), and amyloid plaques. Results: Results indicated similar corticosterone levels but impaired memory performances and increased cerebral staining of thioflavine and of HOl in the sham AD rats compared to the controls. A correlative increase of cortical HOl staining was the only effect of RF-EMF in control rats. In AD rats, RF-EMF exposures induced a correlative increase of hippocampal HO1 staining and reduced corticosterone. Discussion: According to our data, neither AD nor control rats showed modified memory after RF-EMF exposures. Unlike control rats, AD rats showed higher hippocampal oxidative stress and reduced corticosterone with the higher BASAR. This data suggests more fragility related to neurodegenerative disease toward RF-EMF exposures

    Neurobiological effects of repeated radiofrequency exposures in male senescent rats

    No full text
    The increasing use of mobile phones by aging people raises issues about the effects of radiofrequency electromagnetic fields (RF-EMF) on the aging central nervous system. Here, we tested if mobile phone RF-EMF exposures could exacerbate senescence-typical neurobiological deficits. Thus, aged (22–24 months) and young (4–6 months) adult male rats were subjected to head RF-EMF exposures (900 MHz, specific absorption rate (SAR) of 6 W/kg, 45 min/day for 1 month in restraint rockets). To assess senescence-typical neurobiological deficits, spatial memory, emotional memory, anxiety-related behavior, locomotor activity, interleukins (IL)-1β and 6, glial fibrillary acidic protein and corticosterone were measured. Aged rats presented deficits in spatial learning, exploration, anxiety-related behaviors, and increased hippocampal ILs and cortical IL-1β. Results showed that senescence-typical neurobiological deficits were not modified by RF-EMF exposures. RF-EMF-exposed rats (young and aged adults pooled) had decreased anxiety-related behaviors in the elevated plus maze. This study which is the first to assess RF-EMF exposures during late aging did not support the hypothesis of a specific cerebral vulnerability to RF-EMF during senescence. More investigations using longer RF-EMF exposures should be performed to conclude regarding the inoffensiveness of RF-EMF exposures

    Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles

    Get PDF
    International audienceAs the lung is one of the main routes of exposure to manufactured nanoparticles, we developed an in vitro model resembling the alveolo-capillary barrier for the study of nanoparticle translocation. In order to provide a relevant and ethical in vitro model, cost effective and easy-to-implement human cell lines were used. Pulmonary epithelial cells (Calu-3 cell line) and macrophages (THP-1 differentiated cells) were cultivated on the apical side and pulmonary endothelial cells (HPMEC-ST1.6R cell line) on the basal side of a microporous polyester membrane (Transwell). Translocation of non-functionalized (51 and 110 nm) and aminated (52 nm) fluorescent polystyrene (PS) nanobeads was studied in this system. The use of Calu-3 cells allowed high transepithelial electrical resistance (TEER) values (>1000 O cm2) in co-cultures with or without macrophages. After 24 h of exposure to non-cytotoxic concentrations of non-functionalized PS nanobeads, the relative TEER values (%/t0) were significantly decreased in co-cultures. Epithelial cells and macrophages were able to internalize PS nanobeads. Regarding translocation, Transwell membranes per se limit the passage of nanoparticles between apical and basal side. However, small non-functionalized PS nanobeads (51 nm) were able to translocate as they were detected in the basal side of co-cultures. Altogether, these results show that this co-culture model present good barrier properties allowing the study of nanoparticle translocation but research effort need to be done to improve the neutrality of the porous membrane delimitating apical and basal sides of the model

    Alteration of adaptive behaviors of progeny after maternal mobile phone exposure

    No full text
    International audienceExposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny's glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 mu g/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1 beta (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection

    Cerebral radiofrequency exposures during adolescence : Impact on astrocytes and brain functions in healthy and pathologic rat models

    No full text
    The widespread use of mobile phones by adolescents raises concerns about possible health effects of radiofrequency electromagnetic fields (RF EMF 900 MHz) on the immature brain. Neuro-development is a period of particular sensitivity to repeated environmental challenges such as pro-inflammatory insults. Here, we used rats to assess whether astrocyte reactivity, perception, and emotionality were affected by RF EMF exposures during adolescence. We also investigated if adolescent brains were more sensitive to RF EMF exposures after neurodevelopmental inflammation. To do so, we either performed 80 μg/kg intra-peritoneal injections of lipopolysaccharides during gestation or 1.25 μg/h intra-cerebro-ventricular infusions during adolescence. From postnatal day (P)32 to 62, rats were subjected to 45 min RF EMF exposures to the brain (specific absorption rates: 0, 1.5, or 6 W/kg, 5 days/week). From P56, they were tested for perception of novelty, anxiety-like behaviors, and emotional memory. To assess astrocytic reactivity, Glial Fibrillary Acidic Protein was measured at P64. Our results did not show any neurobiological impairment in healthy and vulnerable RF EMF-exposed rats compared to their sham-exposed controls. These data did not support the hypothesis of a specific cerebral sensitivity to RF EMF of adolescents, even after a neurodevelopmental inflammation

    Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures

    No full text
    The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1–40 (Aβ 1–40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1–40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1–40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) and sleep disruption : Melatonin Assessment in saliva and urine

    No full text
    International audienceSleep disruption is frequently reported by people with idiopathic environmental intolerance attributed to electromagnetic fields or IEI-EMF. The physiopathology of this association is not clear. We aimed to evaluate whether melatonin level was affected in IEI-EMFs patients. Melatonin levels in saliva and urine were quantified by immunoassay techniques in a session without intentional exposure to EMF. Sleep quality was assessed by questionnaires.Significant differences in PSQI and ESS scores between compared groups were observed. Likewise, a higher proportion of pathological sleep for ESS was found in IEI-EMF group. Results indicate that melatonin is not associated with different sleep troubles reported by IEI-MFs patients

    Inflammation system and immunological characterization of patients suffering from electrohypersensitivity

    No full text
    International audienceElectrohypersensitivity (EHS) is characterized by a variety of atypical symptoms attributed to EMF exposure. Diagnostic markers are lacking and research of these biomarkers could greatly help understanding this syndrome. The present study aimed to look to the pattern of some selected biological markers of immunological system in EHS individuals. In this regard, we compared levels of immunoglobulin A, neopterin and C Reactive Protein between patient with EHS and their matched control group. In our study, we failed to show a strong marker from immunological system despite a difference in participants according to the EHS duration for neopterin (difference between subgroups between short-term and long term affected participants)

    Disturbed sleep in individuals with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) : Melatonin assessment as a biological marker

    No full text
    Individuals who suffer from idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) complain of a variety of adverse health effects. Troubled sleep remains a recurrent and common symptom in IEI-EMF individuals. Melatonin, a circadian hormone, plays a major role in the sleep process. In this study, we compared levels of melatonin between a sensitive group (IEI-EMF, n=30) and a non-sensitive control group (non IEI-EMF, n=25) without exposure to electromagnetic sources. Three questionnaires were used to evaluate the subjective quality and sleep quantity: the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index and the Spiegel Sleep Inventory. Melatonin was quantified in saliva and its major metabolite 6-sulfatoxymelatonin (aMT6s) in urine. Melatonin levels were compared by a two-way analysis of variance at various times between the control and IEI-EMF group. Despite significantly different sleep scores between the two groups, with a lower score in the IEI-EMF group (P0.05) and urine aMT6s (P>0.05)
    corecore