3,347 research outputs found

    A mathematical framework for inverse wave problems in heterogeneous media

    Full text link
    This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations respresent parametrically the spatially varying mechanical properties of materials. Rocks, manufactured materials, and other wave propagation environments often exhibit spatial heterogeneity in mechanical properties at a wide variety of scales, and coefficient functions representing these properties must mimic this heterogeneity. We show how to choose domains (classes of nonsmooth coefficient functions) and data definitions (traces of weak solutions) so that optimization formulations of inverse wave problems satisfy some of the prerequisites for application of Newton's method and its relatives. These results follow from the properties of a class of abstract first-order evolution systems, of which various physical wave systems appear as concrete instances. Finite speed of propagation for linear waves with bounded, measurable mechanical parameter fields is one of the by-products of this theory

    Responding to natural disasters: Examining identity and prosociality in the context of a major earthquake

    Get PDF
    How does a major natural disaster relate to individuals’ orientation towards society? We collected repeated cross‐sectional surveys before (n = 644) and after the 2010 Chile earthquake (n = 1,389) to examine levels of national identity, prosocial values, helping motivations, and prosocial behaviours in the context of such a calamitous societal event. Our research questions, derived from the literature on helping in times of crisis, considered how natural disasters may implicate identity and prosociality, as well as how identity, prosocial values, and motivations are linked to prosocial action after a disaster. Higher levels of national identity, helping motivations, and disaster‐related helping were found after the earthquake, suggesting that in the aftermath of a disaster, people unite under a common national identity and are motivated to take action related to disaster relief. National identity and prosocial values were closely linked to helping after the earthquake, but specific helping motivations rarely predicted prosocial behaviours. Additionally, proximity to the epicentre was related to higher levels of national identity and participation in reconstruction efforts. These findings contribute to our understanding of people's responses to natural disasters and suggest ways of encouraging prosocial behaviour in the aftermath of unexpected tragic events

    Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments

    Get PDF
    Astronauts complain about fluid shifts from their lower extremities to their head caused by weightlessness during their flight into space. For a study of this phenomenon, RWTH Aachen University and Charité University Berlin participated in a joint project on two parabolic flight campaigns of the German Aerospace Centre (DLR) in September 2005 and June 2006. During these campaigns, the characteristics of the rapid fluid shifts during hyper- and micro gravity were measured by a combination of PPG and PPGI optoelectronic sensor concepts.

    Modified Gravity and Dark Energy models Beyond w(z)w(z)CDM Testable by LSST

    Get PDF
    One of the main science goals of the Large Synoptic Survey Telescope (LSST) is to uncover the nature of cosmic acceleration. In the base analysis, possible deviations from the Lambda-Cold-Dark-Matter (Λ\LambdaCDM) background evolution will be probed by fitting a w(z)w(z)CDM model, which allows for a redshift-dependent dark energy equation of state with w(z)w(z), within general relativity (GR). A rich array of other phenomena can arise due to deviations from the standard Λ\LambdaCDM+GR model though, including modifications to the growth rate of structure and lensing, and novel screening effects on non-linear scales. Concrete physical models are needed to provide consistent predictions for these (potentially small) effects, to give us the best chance of detecting them and separating them from astrophysical systematics. A complex plethora of possible models has been constructed over the past few decades, with none emerging as a particular favorite. This document prioritizes a subset of these models along with rationales for further study and inclusion into the LSST Dark Energy Science Collaboration (DESC) data analysis pipelines, based on their observational viability, theoretical plausibility, and level of theoretical development. We provide references and theoretical expressions to aid the integration of these models into DESC software and simulations, and give justifications for why other models were not prioritized. While DESC efforts are free to pursue other models, we provide here guidelines on which theories appear to have higher priority for collaboration efforts due to their perceived promise and greater instructional value.Comment: 61 pages. Some acknowledgments and references added. This is version-1.1 of an internal collaboration document of LSST-DESC that is being made public and is not planned for submission to a journa

    Bi-large Neutrino Mixing and Mass of the Lightest Neutrino from Third Generation Dominance in a Democratic Approach

    Full text link
    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bi-large mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin \theta_{13}. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m_{top}^2/M_{GUT}) sin^2 \theta_{23} sin^2 \theta_{12} in the limit sin \theta_{13} = 0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M_1, M_2 < 10^{-4} M_3, M_3 = M_{GUT}.Comment: typos correcte

    Symmetric Textures in SO(10) and LMA Solution for Solar Neutrinos

    Full text link
    We analyze a model based on SUSY SO(10) combined with SU(2) family symmetry and symmetric mass matrices constructed by the authors recently. Previously, only the parameter space for the LOW and vacuum oscillation (VO) solutions was investigated. We indicate in this note the parameter space which leads to large mixing angle (LMA) solution to the solar neutrino problem with a slightly modified effective neutrino mass matrix. The symmetric mass textures arising from the left-right symmetry breaking and the SU(2) symmetry breaking give rise to very good predictions for the quark and lepton masses and mixing angles. The prediction of our model for the |U_{e\nu_{3}}| element in the Maki-Nakagawa-Sakata (MNS) matrix is close to the sensitivity of current experiments; thus the validity of our model can be tested in the near future. We also investigate the correlation between the |U_{e\nu_{3}}| element and \tan^{2}\theta_{\odot} in a general two-zero neutrino mass texture.Comment: RevTeX4; 9 pages; 1 figur

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Yukawa-unified natural supersymmetry

    Get PDF
    Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As Yukawa unification requires large tan\beta\sim50, while EWFT requires rather light third generation squarks and low \mu\sim100-250 GeV, B-physics constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1-2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A\to \mu+\mu- decay might allow a determination of tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5 TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde
    corecore