59 research outputs found

    Wrist and Hand Injuries in the Athlete

    Get PDF
    Athletes subject themselves to considerable disability. No matter the sport, the hand and upper extremity are among the most commonly injured sites. Frequently, the most debilitating complications of these conditions are the result of misdiagnosis or delayed diagnosis. Unfortunately, many patients with these delayed and misdiagnosis injuries need to be treated with surgical procedures. To compound the dilemma in treating hand and wrist injuries in this population, one needs to appreciate the athletic personality and the mentality that wishes to dismiss hand injuries as minor. It is essential to educate athletes by clearly communicating the risks and complications inherent to these injuries and the applicable therapy. The purpose of this chapter is to discuss the anatomy, mechanism of injury, diagnosis, and treatment of common athletic injuries as it relates to the fingers, wrist, and hand. Appreciation of the anatomy and mechanism of injury is extremely helpful in diagnosing the pathology. Early and accurate diagnosis minimizes the delayed problems of pain and dysfunction in hand injuries. As with any other sport injury the primary goal is to return the athlete to full participation as soon as possible without risking further injury or permanent disability. Common sense management of the injury is presented in regards to acute treatment, protective splinting and surgical intervention. Specific rehabilitation exercises are outlined at the end of the chapter to avoid repetition, since many of the same exercises are used in the various rehabilitation regimens described

    Ulnar-sided wrist pain. Part I: anatomy and physical examination

    Get PDF
    Ulnar-sided wrist pain is a common complaint, and it presents a diagnostic challenge for hand surgeons and radiologists. The complex anatomy of this region, combined with the small size of structures and subtle imaging findings, compound this problem. A thorough understanding of ulnar-sided wrist anatomy and a systematic clinical examination of this region are essential in arriving at an accurate diagnosis. In part I of this review, ulnar-sided wrist anatomy and clinical examination are discussed for a more comprehensive understanding of ulnar-sided wrist pain

    Ulnar-sided wrist pain. II. Clinical imaging and treatment

    Get PDF
    Pain at the ulnar aspect of the wrist is a diagnostic challenge for hand surgeons and radiologists due to the small and complex anatomical structures involved. In this article, imaging modalities including radiography, arthrography, ultrasound (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography are compared with regard to differential diagnosis. Clinical imaging findings are reviewed for a more comprehensive understanding of this disorder. Treatments for the common diseases that cause the ulnar-sided wrist pain including extensor carpi ulnaris (ECU) tendonitis, flexor carpi ulnaris (FCU) tendonitis, pisotriquetral arthritis, triangular fibrocartilage complex (TFCC) lesions, ulnar impaction, lunotriquetral (LT) instability, and distal radioulnar joint (DRUJ) instability are reviewed

    Preparedness of the CTSA's Structural and Scientific Assets to Support the Mission of the National Center for Advancing Translational Sciences (NCATS)

    Get PDF
    The formation of the National Center for Advancing Translational Sciences (NCATS) brings new promise for moving basic and discoveries to clinical practice, ultimately improving the health of the nation. The CTSA sites, now housed with NCATS, are organized and prepared to support in this endeavor. The CTSAs provide a foundation for capitalizing on such promise through provision of a disease-agnostic infrastructure devoted to C&T science, maintenance of training programs designed for C&T investigators of the future, by incentivizing institutional reorganization and by cultivating institutional support

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore