8,632 research outputs found

    Penrose Limits and Spacetime Singularities

    Full text link
    We give a covariant characterisation of the Penrose plane wave limit: the plane wave profile matrix A(u)A(u) is the restriction of the null geodesic deviation matrix (curvature tensor) of the original spacetime metric to the null geodesic, evaluated in a comoving frame. We also consider the Penrose limits of spacetime singularities and show that for a large class of black hole, cosmological and null singularities (of Szekeres-Iyer ``power-law type''), including those of the FRW and Schwarzschild metrics, the result is a singular homogeneous plane wave with profile A(u)u2A(u)\sim u^{-2}, the scale invariance of the latter reflecting the power-law behaviour of the singularities.Comment: 9 pages, LaTeX2e; v2: additional references and cosmetic correction

    The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes

    Full text link
    This work considers the way that quantum loop effects modify the propagation of light in curved space. The calculation of the refractive index for scalar QED is reviewed and then extended for the first time to QED with spinor particles in the loop. It is shown how, in both cases, the low frequency phase velocity can be greater than c, as found originally by Drummond and Hathrell, but causality is respected in the sense that retarded Green functions vanish outside the lightcone. A "phenomenology" of the refractive index is then presented for black holes, FRW universes and gravitational waves. In some cases, some of the polarization states propagate with a refractive index having a negative imaginary part indicating a potential breakdown of the optical theorem in curved space and possible instabilities.Comment: 62 pages, 14 figures, some signs corrected in formulae and graph

    Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Full text link
    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves.Comment: 20 pages, LaTeX2

    On solvable models of type IIB superstring in NS-NS and R-R plane wave backgrounds

    Get PDF
    We consider type IIB string in the two plane-wave backgrounds which may be interpreted as special limits of the AdS_3 x S^3 metric supported by either the NS-NS or R-R 3-form field. The NS-NS plane-wave string model is equivalent to a direct generalization of the Nappi-Witten model, with its spectrum being similar to that of strings in constant magnetic field. The R-R model can be solved in the light-cone gauge, where the Green-Schwarz action describes 4 massive and 4 massless copies of free bosons and fermions. We find the spectra of the two string models and study the asymptotic density of states. We also discuss a more general class of exactly solvable plane-wave models with reduced supersymmetry which is obtained by adding twists in two spatial 2-planes.Comment: 36 pages, harvmac. v2: discussion of equivalence of the supergravity parts of the spectra of the NS-NS and R-R models added in sect.5.3; v3: added remark on periodicity of the NS-NS spectrum; v4: minor correction in sect.6.

    A Representation of Symmetry Generators for the Type IIB Superstring on a Plane Wave in the U(4) Formalism

    Get PDF
    We calculate the symmetry currents for the type IIB superstring on a maximally supersymmetric plane wave background using the N=(2,2) superconformally covariant U(4) formulation developed by Berkovits, Maldacena and Maoz. An explicit realization of the U(4) generators together with 16 fermionic generators is obtained in terms of the N=(2,2) worldsheet fields. Because the action is no longer quadratic, we use a light-cone version to display the currents in terms of the covariant worldsheet variables.Comment: 9 pages, harvmac, Corrected some typographical errors, Added reference

    The Conformal Penrose Limit and the Resolution of the pp-curvature Singularities

    Full text link
    We consider the exact solutions of the supergravity theories in various dimensions in which the space-time has the form M_{d} x S^{D-d} where M_{d} is an Einstein space admitting a conformal Killing vector and S^{D-d} is a sphere of an appropriate dimension. We show that, if the cosmological constant of M_{d} is negative and the conformal Killing vector is space-like, then such solutions will have a conformal Penrose limit: M^{(0)}_{d} x S^{D-d} where M^{(0)}_{d} is a generalized d-dimensional AdS plane wave. We study the properties of the limiting solutions and find that M^{(0)}_{d} has 1/4 supersymmetry as well as a Virasoro symmetry. We also describe how the pp-curvature singularity of M^{(0)}_{d} is resolved in the particular case of the D6-branes of D=10 type IIA supergravity theory. This distinguished case provides an interesting generalization of the plane waves in D=11 supergravity theory and suggests a duality between the SU(2) gauged d=8 supergravity of Salam and Sezgin on M^{(0)}_{8} and the d=7 ungauged supergravity theory on its pp-wave boundary.Comment: 20 pages, LaTeX; typos corrected, journal versio

    All spacetimes with vanishing curvature invariants

    Get PDF
    All Lorentzian spacetimes with vanishing invariants constructed from the Riemann tensor and its covariant derivatives are determined. A subclass of the Kundt spacetimes results and we display the corresponding metrics in local coordinates. Some potential applications of these spacetimes are discussed.Comment: 24 page

    Kaigorodov spaces and their Penrose limits

    Get PDF
    Kaigorodov spaces arise, after spherical compactification, as near horizon limits of M2, M5, and D3-branes with a particular pp-wave propagating in a world volume direction. We show that the uncompactified near horizon configurations K\times S are solutions of D=11 or D=10 IIB supergravity which correspond to perturbed versions of their AdS \times S analogues. We derive the Penrose-Gueven limits of the Kaigorodov space and the total spaces and analyse their symmetries. An Inonu-Wigner contraction of the Lie algebra is shown to occur, although there is a symmetry enhancement. We compare the results to the maximally supersymmetric CW spaces found as limits of AdS\times S spacetimes: the initial gravitational perturbation on the brane and its near horizon geometry remains after taking non-trivial Penrose limits, but seems to decouple. One particuliar limit yields a time-dependent homogeneous plane-wave background whose string theory is solvable, while in the other cases we find inhomogeneous backgrounds.Comment: latex2e, 24 page

    N=(4,4) Type IIA String Theory on PP-Wave Background

    Get PDF
    We construct IIA GS superstring action on the ten-dimensional pp-wave background, which arises as the compactification of eleven-dimensional pp-wave geometry along the isometry direction. The background geometry has 24 Killing spinors and among them, 16 components correspond to the non-linearly realized kinematical supersymmetry in the string action. The remaining eight components are linearly realized and shown to be independent of x^+ coordinate, which is identified with the world-sheet time coordinate of the string action in the light-cone gauge. The resultant dynamical N=(4,4) supersymmetry is investigated, which is shown to be consistent with the field contents of the action containing two free massive supermultiplets.Comment: latex, 15 pages; v2: typos corrected, polished, references adde

    Vector Supersymmetry of 2D Yang-Mills Theory

    Get PDF
    The vector supersymmetry of the 2D topological BF model is extended to 2D Yang-Mills. The consequences of the corresponding Ward identity on the ultraviolet behavior of the theory are analyzed.Comment: Some references adde
    corecore