258 research outputs found

    Fundamental Studies Relating to the Mechanical Behavior of Solid Propellants, Rocket Grains and Rocket Motors

    Get PDF
    During the past three years, the mechanical testing of solid propellants, solid rocket grains, and solid rocket motors under idealized conditions has been receiving increased attention. Today it is not uncommon to see a multitude of new techniques and analyses being investigated. One may expect to see dummy propellant prepared with glass bead filler to observe its dilatation to rupture; to ink circles, rectangular g rids at various critical areas on a grain surface, and to observe the distortion of these grids as a result of thermal cycling and/or slump; to subj e ct rectangular parallel-opipedal-shaped specimens to both torsion and biaxial tension as well as hydrostatic compression and parallel-plate tension; to apply theories of large elastic strain, and non-linear viscoelasticity; to search for an isotropic failure criterion as well as a crack propagation criterion. In short the mechanics of propellant behavior from small deformation all the way to fracture initiation and propagation has become quite sophisticated. Gradually the results of this testing and their thinking are being integrated in a logical scheme of analysis which is being passed along to the engineer and being used in predicting performance of rocket motors. This particular program will pertain to four areas: 1) The characterization of polyurethane propellant behavior out to fracture initiation in terms of large strain theory. 2) The development of a failure criterion and crack propagation criteria for said materials. 3) The generation, where possible, of macroscopic mechanical parameters in terms of molecular parameters. 4} The solution of certain stress problems, in both linear and non-linear theory, which are prerequisite to engineering applications. As such it is part of a continuing research study of structural integrity problems in solid propellant rocket motors being conducted under the general direction of Dr. M. L. Williams in the Guggenheim Aeronautical Laboratory. This preliminary report is intended as an interim working document to be circulated for the purpose of stimulating discussion

    Fundamental Studies Relating to the Mechanical Behavior of Solid Propellants, Rocket Grains and Rocket Motors

    Get PDF
    The former reports provided considerable information about foam and continuum rubbers under three types of tensile loading (i.e. uniaxial, strip-biaxial and homogeneous-biaxial tension). Since continuum rubbers are almost incompressible it is extremely difficult to determine the strain energy function beyond the linear term. On the other hand the highly dilatable foam rubber enables one to determine the functional form of the strain energy valid up to higher order terms. Special attention is being paid to foam rubber, since it represents .the limiting case of completely dewetted propellant. The present report will (i) furnish the method of determination of strain energy function and the associated constitutive stress-strain law for large deformations out to fracture and (ii) present the triaxial tensile test data needed to double check item (i)

    Fundamental Studies Relating to Systems Analysis of Solid Propellants

    Get PDF
    As in the previous progress reports, the contents in this report have been categorized so as to present a clear picture of their role in contributing to the problem of mechanical failure analysis. The subject of material representation by mechanical failure analysis. The subject of material representation by mechanical models is discussed in Section I, while Section II contains additions to the subject of Elastic Solutions for cylinders. The Engineering Analysis section includes an example of the strain response of an internal star grain to pressure. A damped sinusoid has been assumed for the pressure rise, and the use of stress concentration factors for a star grain is demonstrated. Section V on failure includes some preliminary test results which indicate the feasibility of the cumulative damage concept for composite (polyurethane) propellants, at least in the limited range tested. Recommendations are given which would expand this testing to show how damage accumulates under other conditions such as low temperatures, high strain-rates and with other types of propellant

    Fundamental Studies Relating to Systems Analysis of Solid Propellants : Progress Report No. 6 - GALCIT 101, Subcontract No. R 69752, January 1, 1960-May 31, 1960

    Get PDF
    Previous reports of this series have attempted to define some of the important parameters affecting structural integrity of solid propellant rocket grains. Three general areas have been discussed, namely material properties, analytical procedures, and criteria for mechanical failure. This particular report is devoted to failure criteria, including both limiting deformation and fracture. First of all, the characteristic material properties of filled and unfilled elastomers are described, followed by a brief description of current and proposed tests which can be conducted to obtain experimental information relating to these characteristics in such a form that they can be incorporated in structural integrity analyses. In particular, the necessity for multi-axial tests is stressed in conjunction with minor requirements for new experimental equipment. The selection of appropriate fracture criteria is discussed. Most progress, however, can be reported only in criteria for unfilled elastomers for small and large strains where it appears a distortion strain energy density may be used. It is necessary to delay any really definitive remarks upon filled elastomers or actual grain composites, and subsequent use with cumulative damage analyses, until additional experimental data for propellants is forthcoming

    Student-Athletes with Learning Disabilities: Unique Problems, Unique Solutions

    Get PDF
    This paper explored the issues/acing student-athletes with learning disabilities and their academic counselors. Understanding the nature of learning disabilities and their effects can enhance the counselor's ability to address the complex needs of the student-athlete with a learning disability. The increasing numbers of college student-athletes who have diagnosed learning disabilities demands notice. This paper provided an explanation of the problems of diagnosis and treatment. Suggestions for academic counselors were provided, as well

    Fundamental Studies Relating to Systems Analysis of Solid Propellants : Progress Report No. 5 - GALCIT 101, Subcontract No. RU- 293, October l, 1959-December 31, 1959

    Get PDF
    Previous reports of this series have attempted to define some of the important parameters affecting the structural integrity of solid propellant rocket grains. Three general areas have been discussed, namely material properties, analytical procedures, and criteria for mechanical failure. This particular report is devoted to a more detailed examination of the properties of a filled viscoelastic resin, and their representation by appropriate mechanical models. In addition, a comparison of two methods of computing viscoelastic strains in a pressurized cylinder is presented. In the category of material properties, linear viscoelastic model theory is reviewed, and certain important relations among sets of experimental data are deduced. A justification for the application of this theory is provided by the analytic representation of available dynamic data in terms of a well-known distribution function. Since the inception of this work additional experimental data on propellants has become available. In the category of analytical procedures, the usual approach of representing material properties by a four-element model, as determined from the dynamic data in a limited frequency range, is compared with the more sophisticated Fourier transform method in which the entire frequency range is utilized. The two approaches are applied to calculate the viscoelastic hoop strain at the inner boundary of an internally pressurized infinitely long hollow cylinder subjected to a ramp-type pressure pulse. In this example, the dilatation is assumed elastic or frequency independent and the distortion viscoelastic. In the following quarter, primary effort will be devoted to the determination of a criterion for mechanical failure of propellants. Two steps are involved. One is the analytical representation of ultimate strain as a function of temperature on strain rate by means of a mechanical model. In addition to the usual distribution of relaxation (or retardation) times, this model will be supplied with a distribution of ultimate strain. Step two involves the choice of a suitable criterion for compounding ultimate strain or ultimate stress components into a single parameter, which, when exceeded at a given rate and temperature, denotes the onset of fracture or mechanical failure
    • …
    corecore