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PREFACE 

Previous reports of this series have attempted to 

define some of the important parameters affecting structural 

integrity of solid propellant rocket grains. Three general 

areas have been discussed, namely material properties, 

analytical procedures, and criteria for mechanical failure. 

This particular report is devotzd to failure criteria, 

including both limiting deformation and fracture. First of all, 

the characteristic material prop\3rties of filled and unfilled 

elastomers are described, followed by a brief description of 

current and proposed tests which can be conducted to obtain 

experimental information relating to these characteristics 

in such a form that they can be incorporated in structural 

integrity analyses. In particular, the necessity for nllllti­

axial tests is stressed in conjunction with minor requirements 

for new experimental equipment. 

The selection of appropriate fracture criteria is discussed. 

Most progress, however, can be reported only in criteria for 

unfilled elastomers for small and large strains where it appears 

a distortion strain energy density may be used. It is necessary 

to delay any really definitive remarks upon filled elastomers 

or actual grain composites, and subsequent use with cumulative 

damage analyses, until additional experimental data for propellants 

is forthcoming. 
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V. FAILURE ANALYSIS 

A. Common Types of Failure Criteria 

It has been repeatedly emphasized in earlier reports ( l-
5

) that a 

complete analysis of the structural behavior of a solid propellant rocket 

motor includes not only a stress or strain analysis, but also a failure 

analysis. Previous reports have aimed primarily at investigating methods 

of estimating the stresses or strains in a viscoelastic propellant material 

due to pre scribed applied loads. In this report. we propose to treat the 

companion problem of predicting the maximum imposed loading at which 

either excessive deformation or fracture threshhold is reached. 

1. Deformation criteria 

As implied in the foregoing there are usually two basic structural 

engineering criteria, deformation and fracture. By way of example in solid 

propellant applications, they are exemplified by slump and grain cracking, 

respectively. Generally the first of these is tied in rather closely with 

~allistic performa~ce and storage procedures, that is to say a maximum 

permissible deformation without fracture is more or less arbitrarily 

prescribed. If this is the case, it becomes a simple matter to complete 

the analysis by finding the loading or time corresponding to that state when 

this deformation is reached by applying the viscoelastic analysis techniques 

previously developed. 

One illustration is the situation wherein a second stage rocket grain 

may be fired vertically and subjected to inertia loading for short periods, 

sayp of the orde r of minutes. On the other hand, the grain, perhaps for · 

logistic reasons, may be stored vertically for extended periods and in this 

condition also subjected to vertical gravity forces but over a considerably 

longer time. Both of these situations require the prediction of time dependent 

deformations-the first under ~·g gravity loading for short time, the second 

for one g loads over long time. 

The elastic analysis for such a condition has been presented in the third 

report of this series wherein it is shown that the inward radial constriction of 

a thick walled case-bonded cylindrical grain at the base depends upon the 
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support conditions. If the b as e is complete ly unsupported, the throat 

area doe s not choke at all but takes up the general d e for mation pattern 

s h own i n t he ske tch. On the other hand, if the base is rigidly supported, 

t here will be a choking ten dency as shown. Its magnitude, in the particular 

l.\NSU.PPORTS D 
<=.RAlN ( SL-~.i"POR-n=D 

GRAl"J 

case where the web fr action was fifty perc ent, was found to be of the order 

A0.. -;:::; 2.0~ 
Q s: 

where p is the density (pci) of the p rop e llant and :: the number of times 

gravity load. To examine the effe ct u pon b allistic performance one could 

compute the relative change in port area l:!.Ap/ Ap to be twice the above fi gure. 

The previou s calculation is bas e d upon an e lastic analysis, when E is the 

e lastic modul u s. An approximation to t he time d e pend ent d e fo rmation can 

be obtained by r eplacing E by its viscoelastic equivalent, which f or a three 

element mod e l g ives 

where it may be easily checked that for long times E - m , the rubbery e 
modulus, and for short time s E- m , the glassy modulus. T he relative 

g 
amount of c hoking is seen to d e pend upon the mechanical properti e s, 

including the c haracte ristic r e laxation time . If therefo re the maximum 

p e rmissible b l ocka ge w e re specified as the d e sign criterion, one could . 
compute the time at w h ich it would be exc e ede d for a giv en gravity load. 

A r e asonably lar ge g rain, for examplep wou ld have an upper b o und of 

approximately ten p e rcent p er g at room temperature. 
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The analysis given is approximate, but is presented to make the 

point that if a deformation criterion is imposed, it is merely necessary to 

refine the appropriate deformation analysis to the accuracy desired for the 

prediction. As the procedure is straight forward, although not necessarily 

simple in a given problem because the strain analysis itself is complicated, 

no additional remarks upon the deformation criterion will be included at this 

time. 

2. Fracture criteria 

In contrast to deformation, the mechanics of fracture requires a 

fundamentally different type of investigation. Fracture first occurs on the 

microscopic scale, when the medium is non-continuous. Hence the analysis 

techniques, based as they are upon the assumption of a macroscopic continuum, 

are not valid at the point of fracture. For this reason the problem of fracture 

analysis is markedly more complicated inasmuch as it requires a knowledge of 

molecular behavior not smoothed out by the macroscopic averaging process. 

Cn the other hand, it has proven possible to determine certain extremely useful 

g ross fracture characteristics, for example uniaxial tensile strength as a 

function of strain rate and temperature. From the engineering standpoint, it 

is desirable to extend, empirically if necessary, such limited information on 

special test samples to more complex geometries such as a star grain. 

The general requirement for such a correlation is by no means new, 

although a precise statement for viscoelastic materials has not been particularly 

emphasized. Nadai( 6 ) enumerates for example several different fracture 

criteria, primarily as used in the study of metals, and it is worth restating 

them here. Each criterion defines some particular functional of the stress 

field or strain field, the value of which is to be determined empirically. (As 

yet molecular theories of strength are not advanced to the point of calculating 

such numbers theoretically.) When the appropriate functional is exceeded, 

yield, rupture, fracture or what have you takes place. Seven criteria are 

listed below; 

a) the maximum principal stress 

b) the maximum principal strain 

c) the maximum stress difference (or shear stress) 

d)'the maximum strain difference (or shear strain) 
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e) the maximum total strain energy 

f) the maximum distortional strain energy 

g) the maximum conserv.ed distortional strain energy 

Criteria (a) and (b) refer to the fact that, when three principal 

stresses are acting along principal axes of the stress or strain ellipsoid, 

one of them will be a maximum relative to the other two, barring the case 

of hydrostatic stress. In simple and biaxial tensile fields, these functionals 

are identical with the yield or ultimate stresses and strains for these fields 

re spectively. 

Criteria (c) and (d) stem from the ob s ervation that many materials, 

particularly those which evince ductile fracture (sometimes known as shear 

fracture) do so along a pair of planes or a cone lying in the dire ction of 

greatest s hear. The maximum shear stress has the value ~61 - 6'
3

) and is 

obtained on a plane inclined 45° to the direction of the principal normal 

stresses. It is interesting to obse rve that finite elastic theory predicts an 

angle greater than 45°, whereas, in fact, a value l e ss than 45° is usually 

observed. This criterion is not suitable for mathematical formulat ion since 

it is nece ssary to determine first the maximum or minimum stresse s (or 

strains). 

An alternate c:derbn based on a mean value of the stress differences 

was proposed by von Mises(7>. This takes the form 

= 

and is termed herein the mean deviatoric stress. For both simple uniaxial 

tension and biaxial tension (Jo is identical with the yield or fracture stre ss. 

For pure shear on the other hand, the yield str e ss turns out to be v /-13. 
0 

The mean deviatoric stre ss (or strain) has not been listed as a 

separate criterion because it is actually related to the distortional strain 

energy criterion proposed by Huber and Hencky. (B) T hey observe that 

(G,-Vz.)L + ((12._(}~>'+- (G'"",- (J, J1... 

12_r-
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The mean deviatoric stre s s is also 3/ITtimes a quantity known as the 

octahedral shear stress . The total strain energy listed under (e) was 

proposed by Beltrami and H aigh <9 >. It does not prove satisfactory, 

since there i s no correlation between behavior in pure shear and in pure 

hydrostatic compression. The conserved distortional strain energy refers 

to the energy stored i n a viscoelastic or plastic material, i.e., over and 

above what has been dissipated. The theory of application of this criterion 

is still not in a satisfactory state. 

The important point to note is that no universal fracture criterion 

has been established, and that the success of a given fracture hypothesis 

depends in large measure upon the material with which it is associated. 

Inasmuch as no exhaustive investigation of fracture criteria for elastomers 

has been reported to the authors •- knowledge, it would appear that one direct 

engineering approach is to examine test data in conjunction with certain of 

the aforementioned criteria, and inquire if any of them give reasonable 

correlation. 

The following paragraphs therefore will present a summary and 

discussion of some current and proposed tests and their correlation, after 

a restatement of some of the germane characteristics of elastomers. 
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B. Material Characteristics of Amorphous Elastomers 

A composite solid propellant is a highly filled rubber. Ballistic 

missile logistics demand t hat the filler be oxidatively energetic in order 

to deliver at least 250 sec. of specific impulse in combustion with the 

binder. The science of propellant chemistry has narrowed down the 

inventory of such useful oxidizers to the combination amrnonium perchlorate­

aluminum. In this combination the aluminum fuel serves to prevent over­

oxidation of the rubber fuel, and at the sarre time, by virtue of its high 

exotherrn ic heat of COrr1bustion, overcomes the disadvantage imparted to the 

exhaust gas by its high molecular weights. 

Rheological studies have shown that it is expedient to incorporate 

the filler as a trimodally distributed agglomerate of particles, ranging f romone 

to 250 microns in diameter with the mean size occurring at about 30 microns. 

Single crystal studies have shown that the alurr~ inum-rubber bond in tension 

is approximately 90 psi, and that of the oxidizer rubber abOt.'.t 30 psi. Since 

the tensile strensth of a filled r ubber lies in the range 20 to 200 psi at room 

temperature, it is seen that the filler-binder interaction contributes an 

important feat ~.;r~ to the mechanical behavior of such composites. E ecause 

of its relatively high bulk and shear moduli, the filler may be assumed to be 

absolutely rigid. 

The binder. according to current standards, is a synthetic rubber, 

negligibly crystalline, with a molecular weight between juncture points 

anywhere from 10 to 100, 000. These juncture points may be branch­

points at which a tri- or tetra-functional monorrer has been incorporated 

into a condensation polymerization system; or they may be crosslinks 

effected, not by vulcanization~ but by mixed condensation-addition poly­

merization. The mechanical properties of the' binder, without its filler, 

are not t he same as those of the pure rubber. The polymerization process 

is markedly affected by the presence of the filler. 

Needless to say, the mechanical propertie s of such a composite 

are a quite corrplicated f unction of the properties of the binder, of the volume 

fraction, particle size distribution, and adhesion of the filler. In order to 

understand the fracture mechanics of such a system, it is appropriate to 
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study first th~ fracture mechanics of unfilled rubbers, and tren study 

the modifications produced by various degrees of filler. In carrying out 

this con parison. it is extrernely important to reme mbe r that the filler 

not only rnodifies the mechanical properties, but also the molecular 

structure of the binder. so that it is necessary to understand how the 

mechanical properties of a rubber depend upon molecular structure. 

Finally. before proceeding with this study, it is appropriate to 

ask~ what are the important modifications introduced by the filler? 

Experimental studies on propellants have shown three differences from 

unfilled rubbers. First» the tensile properties of fill~d rubbers are very 

different from their compression properties. Secondly. yield occurs in a 

series of steps; it may be necessary to distinguish among several types of 

yield. For example, it may be important. from the ballistic viewpoint. to 

define yield as the point at which the propellant has become porous enough. 

by virtue of mechanical strain, to increase its burning rate beyond a safe 

value. This critical porous strain may be less than the strain at which 

mechanical failu re will occur. Thirdly» relaxation of stress progresses 

long after the rubber component has relaxed to its rubbery modulus~ this 

indicates that a reshuffling of the adhesion bonds and positions of filler 

particles is a continuing process. 

The next sections discuss the elastic fracture of rubbers and unfilled 

binders. 

1. Unfilled elastomers 

As the title of this section indicates. the materials with which W(! 

are dealing stor e energy reversibly until the time a crack appears. At 

this point, the energy released can in principle be accounted for by the 

k inetic energy and surface energy imparted to the new crack. The crack 

acts as a point of stress conce ntration but the local stress far away from 

the crack will remain below the yield stress of the material and thu s 

continue to store energy elastically until the crack propagates through the 

material~ at which time all the remaining strain energy will be recovered 

as kine tic energy. 
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Examples of such elastomers are natural rubber, butyl rubberp 

styrene-butadiene rubber (SBR, formerly GRS);, polyurethane r ubber, etc. 

All such rubbers evince large shear deformations prior to yield or cracking, 

and must therefore be characterized by a theory which allows for large 

deformations, Rivlin (lO) has shown that the strain energy of a unit volume 

of undeformed rubber may be appropriately expressed as a function of three 

strain invariants, which, for an incompressible material. assume the form: 

r, = ~2. +-
I 

A';_ + 'Az 
!. (1-a) 

Iz = I I I - + ~ .. + 
>-~ (1-b) 'A.,'- .. 

.L~ 
)...l.)\l.)\'-

I 2 '!. • 1 (1-c) 

Where ~i is the extension ratio of the coordinate acted on by the normal stress 

CJ.. Application of the principle of virtua l work leads to the stress- strain 
1 

relation* intermsof the true stress v. : 
1 

if- (2) 

where k is, in g eneral, a function of the coordinates, but not of the strain 

invariants, 

In order to u se (2), it is necessary to understand the nature of the 

strain energy density function W, and in particular, to procure an analytical 

representation which holds as close to ruptu re as possible. We shall take 

as our type material~ for this studyp unfilled natural gum rubber v ulcanizate, 

the simple stress-strain curve for which is reproduced (ll) in Figure 1. It 

is characteristic of natural rubbers that they possess a sharp increase in 

stress beyorxl 500°/o elongation. Most synthetic rubbers break near this 

elongation. 

*When shear forces as well as normal forces are acting, the ~. 1s are 
replaced by a set of appropriate strain tensors. In what follovJs, (2) 
will suffice, 
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An empirical method for rectifying simple tensile data ( 12 ~ obtained 

on incompressible elastomers is based on the following observations. The 

initial portion of the stress-strain curve is fairl y well represented by 

= E. (1 -+) (3} 

which is equivalent to 

(4} 

where '\J is the true stress. Note that for large extension ratios (3)-­

approaches the limiting value \J~ E o In order to provide for the rapid 

increase in stress with later portions of the curve at large strain~> (3) 

may be modified to 

(J = E A- I A => 
Az.. 

which reduces to (3) for 13 = ~ at small >..~> L e •• 

e 
Cne can use ~5} by plotting (Figure 2) 

= 

where it is observed that the stress in kg/cm
2 

is giv en by 

() -== o. 705 
\-l 
~2. 

6<A 

( 7} 

(8-a) 

{8-b) 

We proceed to define >.. = b' as the yield point and observe that the modulus 

after yield is reduced by slightly more than a factor of 10, indicating that 

the network resistance has been drastically lowered. Since modulus is 
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proportional to cross links per unit volume, we infer that the loss in cross­

link concentration arises from the slippage or tearing of entanglements, and 

that only the true chemical crosslinks remain to offer resistance. Support 

for this inference is deduced from the observation that the exponential factor 

now behaves more like X. 2 
than X., since 13 has doubled. This means that the 

load rather than the true stress is proportional to strain, the proportionality 

constant now behaving like a spring constant; lateral effects have suddenly 

become unimportantp the network loops now offe r little or no resistance. 

The exponential factor exp 13(">..-X. - 1
} is not amenable to quadrature 

and so the area under the curve in Figure 1 was evaluated stepwise by 

Simpson9s Rule and the resulting strain energy plotted in Figu re 3. This 

smooth monotonically increasing function of X. is nicely rectified by plotting 

W vs (IC3) as network theory ( 
13

) demand~, (Figure 4). Again we note the 

yield at X. = G • Prior to yield, the strain energy function is well represented 

by 

W= Q. 8 8 3 ( I l -3 ) 
( 9) 

so that the shear and Young 9 s moduli are approximately 1. 76 kg/ em 2 and 

5. 28 kg/em, respectively; this is a somewhat lower value than that ob tained 

from Figure 2, but this is so because in (8) a higher E is ne e ded to compensate 

for 13 = i; in other words, only the initial portion of the tensile curve can be 

represented in the form (8 ) with 13 = i and E = 5. 28. 

The incompressib ility of rubber all the way to rupture can be neatly 

demonstrated in the following way. In the case of simple tension~ the strain 

transformation is given by 

>-. - _\ 
2 - i>: (10) 

I = ( 11) 
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The relations (10) and pl) hold only in the case of an incompressible 

material. Now assume that the strain energy function is given in the 

Mooney- Ri vlin form 

w = 'v.J(I,-3)+ 
I 

( 12-} 

where W 1, W 2 are constants characteristic of the materialp we have 

chosen w1 = . 883~ w2 =C. The slope of the curve in Figure 4 is g iven 

by 

dW 
di, 

- w, 

in our case; similarly 

"' dT;r. + VVz.-
di1 

= w\ w, ( 13) 

= ( 14) 

Figure 5 s hows a plot of W vs. (12 - 3}; it is easily verified that the slope 

at any point,dW/di2 >is exactly equal to X. times the slope dW/di
1 

of 

Figure 4 right out to rupture. Thu s the discontinuities observed in 

Figu:res 2 and 3 are not to be associated with density changes. 

We turn now _from a description of the material characteristics of 

unfilled elastomers to those of the filled material. 

2. Filled elastomers 

The most striking difference between filled and unfilled elastomers 

is the so-called blanching phenomenon or pullaway of the binder from the 

filler. As indicated in the introduc tion, this makes for three observations. 

First, the pullaway occurs in ste ps, undoubtedly depending upon the 

distribution of adhesion bond strengths between oxidizer and binder. 

Second, it does not occur in compression. Third, after pullaway, relaxation 

not of the network, but of the strain energy lcx:ated at the surface of the void 

spaces, occurs. This is demonstrated by the fact that a filled rubber, after 

three months at constant strain (30°/o), will relax its modulus from 500 psi 
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to 5 psi. And then, upon complete recovery of the applied strain at the 

end of a second three months, will resume its initial modulus minus the 

contribution that arose from the adhesion to the filler. If this cycle be 

repeated a second time, the modulus will relax and return to roughly the 

same values. 

Because of this reversible shuffling back and forth of the filler 

particleSp it follows that the time rate of change of the local stress 

distribution in a filled rubber must be quite complicated and that the 

rupture criterion may be significantly more complex than that which is 

proposed above for an unfilled rubber. One can start by neglecting 

relaxation, ie. p working with short time data. On this basis then, the 

curvature of a tensile curve is to be ascribed entirely to pullaway effects 

without reshuffling. The modulus decreases because adhesion bonds are 

broken and because the propellant dilates. This dilation effect is shown in 

Figure 6 where Poisson's ratio is plotted vs. axial strain, the strains having 

b een carefully measured photographically. Figure 7 shows how th e modulus 

is increased in the region of negative strain or compression. The que'stion 

arises: what sort of elastic behavior is evinced by such a material when it 

is subjected to combined tension and compression? 

A relatively simple case arises in the pressurization of an infinitely 

long hollow un'~onded tube of propellant, internally pressurized, the analysis 

of which will be pursued here. Since the algebra is quite involved, only the 

essential features will be sketched. It is thought that this type of analysis 

will become increasingly important as the natu re of the pullaway effect 

becomes more completely understood. 

As a result of internal pressurization, all radial and axial elements 

of the propellant tube are in compression. The hoop element~ however, are 

in tension so that an orthotropic response may occur. Jaeger(1 4 ) shows that 

for such a case, where the orthotropic material properties are with respect 

to cylindrical coordinatesp the stress-strain relations are 

Ve c~"5 Ee + c,~ f".,. + c ~3 f 1. 't' re "' C44 Yn~ ( 15) 

\Jr = cl3 (e + c" Cr -t (c.,,- 2.cGG) ti.. 't 62. = c4.:t ~et.. 

<It,_ cl "!> fe + (c .. - 2c'"'") f..,. + c" E-z. Lti. - c66 Vn. 
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By analogy with isotropic theoryp we have 

c,, : ~ 

c"33 A1 r + 2r-
(16) 

c,~ Arc. 

c,, Ace +-2.)-A-

Since the hoop direction is the only one in tension, C 33 is the coefficient 

that one would measure in triaxial tension, of the type described in 

Section II, so that (C 
33

-2 /-"- ) is indicated by the Lame constant with a 

double subscript I p Likewise, (C 11 -2 ?-) is the Lame constant one gets 

from triaxial compression, and is designated by the double subscript _f.. 

The coefficient C 
13 

is an interaction coefficient which could b e measured in 

mixed triaxial compression tension, i.e. p pulling in one direction and 

squeezing on the two sides. In pure compression, the constants b ecome 

= = ( 17) 

where K is now the hydrostatic bulk modulus in compression. In the problem 

at hand, we have 

ue C33 
VL dlA 

- r + c 13 clf 
~ 18 -a) 

l,( dlA 
Cl-t = C I~ + c" --r dl' 

(18- b} 

c-2 = 
u. (c~~-zr )~~ c,~- + .. ( 18-c) 

where u is the radial displacement. Substitution of (18) into the equation 

of stress equilibrium 

d <J.r 
1-

<J, - (Je 0 -
d-r r 

(19) 

yields 

dz\.A. 1 du.. c33 lA 
0 + -

d -r~ 
., dr- c" 

,, (20) 
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Note that, by direct observation, ~-n<< ~ (because of the pullaway effect) cc 
and therefore C 

3
/ C

11 
< 1. The solution of (2.0} is given by 

(21) 

(22) 

1 

where k = (c
33

/ci1)2. The constants A and B can now be evaluated at r =a, 

and r = b, where a- = ~P and 0 r e spectively. The result is 
r 

= 

(~)I~ ((- ( f y- ~ 
( ~) ~~ k _ ( :. r- ,( 
(~)~~~ + (7)'-k 
( ~ y· f<- ( ~ r- f< 

~tt*r~ + (-+)l-k 1 + ~ t( +Y+k- ( + r-~ J 
(,1 [ {<?. - ( ~~.~ ) 2. J [ ( ! )' ~ ( - ( ~ ) 1- {c J 

(23) 

(24) 

(2. 5) 

Note that if c 13 /c11 > k, the radial displacement is negative. 

However this is not physically possible since the work done by the internal 

pressure must always be positivez hence one should find experimentally 

that c 13 /c 11 ~ k. Furtherp when c
13

/c
11 

= k, there is no singularity 

as can be seen by taking limits carefully. The most significant difference 

from the isotropic case arises in the occurrence of fractional rather than 

integral exponent powers of the radial coordinate. 
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This same treatment can be applied to the case-bonded propellant. 

It will be necessary in this and many other situations to solve for the point 

at which the hoop stress changes sign. B y following this procedurej one 

can avoid trial and error technique s. In gene ralj problems of t his nature 

will best be solved with the aid of dig ital computational aids. Before 

programming, however, it will be necessary to determine the strain energy 

function for the propellant in both compression and tension. The theory of 

finite elastic deformation of anisotropic materials has been presented by 

Rivlin and Erickson ( 
15

} so that, in principle , the pullaway effect can be 

handled all the way to rupture if the strain energy density function is known. 
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C. Uniaxial Test Data 

Considering the implied necessity for obtaining material property 

data for fracture investigations, such as the strain energy density function 

just mentioned, it is appropriate to review some of the current tests com­

monly being conducted, and their applicability to the problem at hand. 

1. Standard variable strain rate testing 

By far the largest accumulation of data relates to fracture under 

simple uniaxial tension. For solid propellant materials these tests have 

normally been conducted on standard JANAF specimens (Figure 8) at vari­

able strain rates and temperatures. One common testing machine is the 

Instron tester which will impose constant crosshead motion through a range 

of speeds from 0. 02 to 20 inches per minute, over a temperature range be-
o 6 0 tween -100 F and 1 0 F. The output of the machine is an automatically 

recorded force -time trace to fracture (Figure 9) which provides the basic 

experimental i nformation. Depending upon the magnitude of strain to frac­

ture, t h e data is converted into plots of nominal or true stress, i.e . force 

divided by original or actual cross sectional area, versus strain. The ac­

curacy of the latter quantity is frequently open to question because t he elonga­

tion, or crosshead separation, is not distributed evenly over the specimen 

length and some "effective length" must be selected. It is common practice 

to use an effective length of 2.. 7 inches for t he JANAF specimen. 

This uncertainty in t he basic data emphasizes th e desirability, and 

near necessity, of developing local strain indicating devices for low modulus 

materials. Several improvements along these lines have been attempted, 

such as using gage marks near the center of longer specimens, or circle 

patterns distributed over t he length . While some increase in accuracy has 

been reported, the data serve also to indicate in many cases a basic non­

h omogeneity in strain distribution due to the filler particles in t he propellant. 

Neglecting neverth eless t hese important experimental refinements 

and working only with the reduced experimental stress-strain data, one turns 

next to the problem of organizing t he extensive test information for many 

temperatures and strain rates in useful form. Presuming for the most part 

that maximum stress, cr , and strain at maximum stress, € , are the 
m m 

significant quantities (the slope of the curve, or modulus, is also used in 

model representation) Smith has s h own for a wide variety of polymers t h at a 
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very reasonable correlation of ultimate tensile properties can be obtained 

if the data are plotted against the logarithm of a reduced time parameter, 

a. T R , where R is the constant strain rate at which the test was conducted 

and 2!-T is the Williams, Landel, Ferry (WLF) temperature shift factor, 

t 
Log aT = log~ 

c, (1- T s ) 

C:~. + T - 1$-
(Z6) 

aT can also be interpreted as the ratio of the time to measure some phe­

nomena at temperature T to the time to measure the same phenomena at the 

reference temperature T s . 

A set of typical strain data is shown in Figure 10, and similar stress 

data in Figure 11. Note in the latter case the stress has been normalized by 

a temperature ratio because polymer theory predicts a linear increase of 

retractive forces , with absolute temperature. Both sets of data were nor­

malized by using the temperature shift factor, experimentally deduced from 

separately shifting (i) strain at ultimate stress data, (ii) maximum stress 

data, and (iii) modulus data, and finding all three agreed if c 
1 

= -8. 86, 

Cz = 101.6 and T 5 = Z69°K. That such a convenient and near universal 

correlation exists for ultimate properties is extremely useful, and among 

other things, permits one to predict with fair precision the uniaxial tensile 

fracture behavior over wide ranges of strain rate and temperature from a 

limited set of test data. 

Before passing on to a consideration of fracture under multi-axial 

load conditions, it should be observed that the temperature shift correlation 

is reasonably well founded experimentally but that the limited strain rate 

capability of the Instron tester is n ot particularly well suited for verifying the 

correlation over wide extremes. This may be noted in Figure 10 where the 

test data at various temperatures barely overlap. One w<?uld feel much more 

confident if, for example, the open circle ( 160°F) data obtained over the 

1 /R~ range 5 to 8 could be extended to lower values by increasing the strain 

rate, hence lower 1 /RaT , at the same 160°F temperature. Bearing in 

mind however the limitation of the tester, approximately ZO inches per minute 

crosshead motion maximum, it is impossible to fulfill this desire without 

changing the specimen, which would not be particularly acceptableo 
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2. High strain rate testing 

The obvious answer is to inquire if higher rate testers would be 

available. Several have been ·developed. One of these is the Allegheny In­

strument Company device(l?) which is generally well known. Another is one 

developed by E. I. DuPont de Nemours and described in a recent paper by 

Jones(lB). Basically this latter machine, which achieves high loading rates 

by means of a controlled explosion of smokeless powder in the head, can 

strain JANAF specimens up to approximately 200, 000 inches per minute. 

W hile it is premature to generalize, indications from this and other high 

speed tester work are that the theoretical W LF s !-lift factor for ultimate 

fracture of tensile JANAF specimens is valid for engineering purposes. 
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D. Multiaxial Testing 

Inasmuch as the uniaxial testing procedures for simple JANAF 

tension specimens are well known and data reduction techniques widely 

disseminated 10 the subject has been rather shortly dismissed. Cn the 

other hand~ from a structural standpoint as distinguished from the 

quality control objectivep the important subject of the fracture behavior 

of viscoelastic materials subjected to biaxial and triaxial loading s needs 

considerable amplification. but suffers from lack of experimental data. 

At the pre sent time._ it is proposed to discuss some possible experiments 

in this area with particular emphasis upon the ir suitability for solid 

propellant materials and due regard for testing equipment convenience. 

1. Pressurized tensile tests 

Perhaps one of the simplest extensions of the present uniaxial 

tensile test using t he Instron tester is to enclose the specimen in a l eak 

proof container filled with air or liquid maintained at an arbitrary compressive 

. pressure, Within the same criticisms of 

the basic test with no external pressure. 

a triaxial tension-compression stress 

field can be imposed. Suppose that the 

geometry is as shown on the s ke tch. 

Then the stress and strain analysis for 

the central portion of the specimen 

subjected to the uniaxial tensile stress 

gives 

(27) 
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One would expect therefore an apparent uniaxial modulus for this triaxial 

field of 

£ (29) 
1- 2'Yk 

whereg because in the tests as described k is negative corresponding to 

a compressive stress9 the apparent modulus would be smaller than the 

uniaxial modulus. For small strains it would in principle be possible to 

deduce the {elastic} value o( Poisson's ratio. 

As in the former case, these tests could be conducted at various 

strain rates and temperatures. 

2. Poke r chip tests 

Another test that may be conducted with relative ease consists of 

cementing a thin circular disk of propellant between two parallel end faces 

of two circular steel plates being subject ed to tension. The softer disk 

sandwiched between the harder bars will be restrained~because of its 

thinnes s,from its u sual contraction perpendicular to the load and hence 

generate a triaxial tension stress field. 

The elementary analysis for this case may be made by assuming 

the disk infinitely thin such that the external radius is sufficiently far from 

the center to assume the only non-zero displacen1ent, w, is in the axial 

direction. Under these conditions 9 one is led to deduce for small deformations 

<r-3 = C) E.:;= 
cr (l-2v)(J-t-Y) 

J E ( 1-'Y) 
(30-a} 

u, G""-z 
v ct E1 :r t 2 - = . ==o 1-'Y ' 

{30-b) 

so that the apparent axial modulus becomes 

i I-V ] E -E 
4.- (1-2.JJ)(t+V) 

(31} 
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where it ~ay be noted that for propellants, which are characteristically 

nearly incompressible, i.e. • ~ = t, the triaxial tension approaches 

hydrostatic with a consequent infinite apparent axial stiffness. 

A fairly extensive and revealing investigation into the use of this 

test for an incompressible rubber has been reported in two papers by 

Gent and Lindley <19 -
20

). When one attempts to improve the analysis 

outlined above., the major difficulty arises in determining the stresses 

and strains throughout the disk. Whereas the previous analysis assumes 

the edges are infinitely far from the center, in the actual test piece there will 

will be a local necking of the propellant, however slight, as the assembly is 

subjected to tension. When this effect is accounted for the analysis becomes 

considerably more complicated. For an incompressible material, Gent and 

Lindley have given an approximation to the apparent axial modulus which 

depends on the thickness, h g of the disk of radius a , 

[ 
. f (a. )21 

Ea.. = E I+ z hI 
-.1 

(32) 

where it may be observed that the apparent modulus. as before, becomes 

infinite as the thickness approaches zero. 

Furthermore their fracture data, reproduced in Figure 12, shows 

for the various compositions indicated by the different curves that the axial 

stress to cause fracture increases as the disk thickness decreases. They 

have suggested that the limit for zero thickness is twice the value for large 

thickness. While it is tempting to thus extrapolate the data, it is not 

unreasonable to expect the curve near zero h/ a to change slope. Realizing 

that the breaking stress used by Gent and Lindley is in reality an averaged 

stress over the face of disk. it would be appropriate to obtain an improved 

approximation. This can actually be obtained using the principle of 

minimum complementary energy. The outline of such a solution given in 

Appendix 5. 1, and not restricted to incompressible materials, predicts a 

stress distribution that is a power law in the radius and hyperbolic in the 

thickness, and for the limiting situation of zero thickness (infinite radius} 

gives the proper limiting value cr r/ cr' 'l. = ~I (1- .y ). Further remarks 

upon the utility of this solution in interpreting the experimental failure 

data will be reserved until later. 



-22 

By conducting such tests as reported above, using an Instron tester, 

the usual ranges of interest in strain rate and temperature can be covered 

and the possibility of strain ratej) temperature shift explored. 

3. Torsion of rod specimens 

Among the various types of mechanical testing, torsion stands as 

particularly important. There are several reasons for this. First of all, 

a cylindrical specimen subjected to a small angle of twist undergoes pure 

shear; the applied torque is directly proportional to the measured twist 

angle per unit length, the proportionality constant being the shear modulus. 

Thus the torsion properties for small strain should be independent of 

Poisson's ratio. 

As the shear strain is increasedj) however, new effects enter the 

picture.. Finite elastic theory predicts a lengthening of the specimen 

known as the Poynting effect. 

It may be deduced that 

1 + 

where }.. is the axial extension ratio 

a, b are the innerj) outer radius of the cylinder respectively 

k is the angle of twist per unit length 

(33) 

One obtains (33) by application of finite elastic theory to the strain trans­

formation defined by 

r- r--
~ 

e - e + Y<~ 

~ = A} 
The undetermined constant which enters into the theory because of the 

incompressibility condition is determined by setting the integral of the 

axial stress over the end face equal to zero. Figure 13 shows a plot of 

}.. 3 -1 vs k 2
P taken from recent data(Zl)__on polyurethane propellant. Note 
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the excellent straight line correlation in agreement with theory. The 

theoretical value of the slope is 1/8 in
2 

/ rad 
2 

P whereas the measured 

value turns out to be 1/7 in2 / rad
2

. Considering the assumptions made 

in deriving (33}. the agreement is excellent. The most important 

observation that can be deduced from this is that the elastic properties 

of the binder predominate at least up to 3°/o shear strain. A similar 

type of verification is provided by the recent data of Bergenp Messersmith 

and Rivlin on filled rubbers( 22 >. 
On the other hand, indications are the elongation will decrease as the 

twist is increased further. This is to be expected since the pullaway of the 

.binder from the filler will tend to convert the local shear into local simple 

tension around the filler particles. What effect this will have upon fracture 

in torsion is not known. It is suspected that the fracture criterion will not 

be as simple for a filled elastomer as an unfilled one, therefore torsion 

should provide an excellent way to check o u t the applicability of the distortion 

strain energy criterion. Furthermorep torsion under superimposed hydro­

static pres sure can then be used to check out the importance of anisotropy. 

4. Hollow tube tests 

Providing a satisfactory strain measurement is available, the 

behavior of an internally pressurized thin or thick walled cylinder up to 

and including burst would yield fracture information under biaxial tensionp 

for zero axial stress, or with the added triaxiality depending upon the nature 

of a finite longitudinal stress. This type of specimen has been used with 

mixed success at the U.S. Naval Ordnance Test Station(23) employing an 

oil for the pressurization. The major difficulties aside from such obvious 

ones as preventing leakagep are to obtain an accurate strain history and to 

measure the applied time varying pressure. These tests can be used upon 

either thin or thick walled cylinders, and with or without being enclosed in 

a case. In some cases it will be more convenient to check out a thin case­

bonded design using externally mounted wire strain gages and inferring the 

tube, or even star pointp strains by working backward using the theoretical 

solution. For most purposes howeverp the resultant case to grain stiffness 

is so high that accuracy is poor. 
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The main advantage of such a test is its reasonably close similarity 

to an actual operational configuration. If the pressure-time rise is 

appropriately regulated, the test could be useful in predicting fracture 

under a varying and typical strain rate history. 

It should also be mentioned that it is possible to extend the rod 

torsion tests mentioned in the preceding section to hollow cylinders, 

preferably thin walled because o f the relative accuracy with which the 

theoretical solution is known. Shank (Z4 ) has recently undertaken some 

exploratory work in this area although it is expected some time will elaps e 

before definitive results are obtained. Another test variation using the 

hollow tube is the possibility of using this geometry to examine the effect 

of orthotropy of multi-layered cylinders. Some preliminary analysis along 

these lines was presented by Pister in the third progress report. Some 

unpublished results of his continuing program, including some planned 

experiments, should furnish evidence for or against the desirability of this 

test geometry for orthotropic propellant media studies. 

5. Crack propagation tests 

Multiaxial testing can also be extended to include the biaxial stress 

field which exists near the point of a crack in a medium which has already 

begun to fracture. We consider several "initially cracked configurations 

and their associated stress fields. 

a. Thin sheets subjected to stretching:- A common configuration 

for metal sheet specimens not u s ed extensively for propellants is the tensile 

cr 
t t t t 

strip containing a crack perpendicular 

to the load. This test is used to 

determine critical crack l ength, i.e., 

to find what size crack or flaw a given 

material of specified thickness will 

sustain under a specified external 

stress befor e it becomes unstable and 

propagates catastrophically. 
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A considerable amount of test data and test technique has been accumulated, 

particularly in the aeronautical field. The test results are usually presented 

as in Figure 14. The main distinction between metals and propellants, of 

course_,is the sensitive strain rate dependency of the latter. One suspects 

that a stressed specimen with a critical crack will not "let go" but rather 

begin to fracturep at higher than impact rates. in more of a tearing fashion. 

A series of exploratory tests was conducted by McCullough (Z
9

) 

upon specimens one-quarterinch thick and two inches wide containing an initial 

crack two-tenths of an inch long. For experimental convenience, these 

were conducted at essentially constant strain and held until the crack began 

to grow and the stress simultaneously relaxed. Typical data is shown in 

Figure 15. 

A somewhat general elastic analysis for this geometry has been 

presented by Ang and Williams (2.
6

} for an orthotropic sheet subjected to 

combined stretching and bending, assumed infinitely wide with respect to 

the initial crack length Zb. This elastic solution as might be expected 

suffers from the fact that it predicts infinite stresses at the crack tip which 

are of course physically inadmissible. On the other hand one can hypothesize the 

the existence of a region of constant finite stress with a characteristic radial 

extent which would give a stress distribution such as shown in the sketch. 

~00 
I ELAS\IC 
IY"' SOLUT\0"-1 
I 

'DISTAI-JCI: 1"'120M 
CRACK POINI 

For problems where the boundary 

conditions are prescribed solely upon 

the stress, it will be recalled that the 

viscoelastic analogy permits one to 

conclude that the viscoelastic stress 

distribution is identical with the elastic 

one. This experimental specimen 

geometry is a case in point if the 

"plastic" region is neglected because all 

boundariesg including the crack, are stress free except at the loading jaws 

where it may be assumed the (uniform) stresses are prescribed. Hence one 

may, for example. use the Ang- Williams elastic solution. reduced to the case 

of stretching in an assumed isotropic sheet to give the viscoelastic stresses. 

along the line of crack propagation for example, as 



-26 
()' - ~0 D

2 

'?( ( ")( 1 0) - -v?(Z.- b2. ['"X --t- "f)< "Z.,_ t;,"Z. J 

- O'o \ v~- -I -r- 0 [(~*1+ ··} ; 
b:z.. 
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-x=b+E. 

(34) 

--x > b (35) 

- ()0 { IA:z.E:/p + 0 [(~1:]+ .. ~ ; '"><= b+E. 
It may be noted that at the crack point the solution predicts a two-dimensional 

hydrostatic tension described in detail elsewhere(2.?)_ 

The viscoelastic strains and deformations are obtained in the usual 

fashion. It is necessary only to insert the Laplace transform of the pressu re­

time loading into the solution for stresses above, integrate for the displace­

mentap and complete the inverse transform for the physical displacements. 

From the. fracture standpoint, however, the analysis is only partially 

completed. As stressed in the introduction, the strain analysis due to a 

eiven loading must be supplemented by predicting the load for which fracture 

will occur, or in this case, fo r which the crack will begin to grow. An 

analysis has been presented in Appendix 5. 2 giving the velocity of crack 

propagation as a function of the allowable one-dimensional strain E * and 

the radius of the enclavep b , over which it is presumed constant. The 

simple analysis for a constant applied stre.ss, 6o• has been carried o ut 

using a ttW-tt ...., element viscoelastic mode 1 and leads to the result that the 

velocity of the crack point, v , at a distance n $from the original position is n 

(36) 

In principle, therefore, it would be possible to carry out the 

calculations for the constant strain loading used by McCullough and deduce 

the appropriate value of ~ • if it exi sts. On the other hand, and considering 

the exploratory nature of his early tests, a newset is being conducted based 

upon a constant applied stress for which the foregoing analysis is directly 

applicable. It should be emphasized however that b , e stimated in Appendix 

5. 2 to be of the order of one thousandth of an inch, is still an experimental 

parameter to be determined, although physically it may be thought of as the 
J 

effective diameter of a strand or bundle of polymer chains which act together. 
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b. Thin sheets subjected to bending:- Another configuration of 

considerable interest is an initially cracked specimen subjected to bending. 

One common form is the peel or tear test. but, instead of testing adhesive 

strength to another material such as a propellant case, suppose a cantilever 

p sheet specimen was bent as indicated 

in the sketch. It can be shown that 

there is a biaxial stress at the base of 

the tear and one could attempt to 

analyze the resulting stresses and 

strains. Alternately one could consider, 

for example a long cylindrical tube with 

a wedge cut out where the wedge approaches 

zero so that one would have a plane 

fracture surface (see sketch). This 

situation would correspond somewhat 

to a crack along a star valley where the 

wedge angle was adjusted appropriatdy. 

Finally one could subject the same 

cracked geometry as used in the tensile 

loading situation to bending. Generally 

speaking, however, grains are not 

customarily loaded as indicated in the 

first and third sketches, and thus these 

bending configurations are not of such 

immediate use except insofar as they 

assist in interpreting the mechanics of 

fracture. Explicit solutions for the 

first situation are not presently available 

but the Ang- Williams solution can be applied to the strip containing a crack. 

The "log-splitting problem" however has been considered theoretically <28 • Z9, .30) 

and gives some estimates of the biaxial distribution. At the present time, 

however, they do not appear quite as ready for interpreting possible tests as 

other suggestions previously made. 
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c. Pressurized membrane:- One final test to be described concerns 

a circular sheet of propellant mounted over the top of a gas or liquid 

pressure source ~ much like a drum head subjected to internal pressure. 

The stress distribution at the center is uniform tensile - tensile and 

determinable if the bending is considered a small effect. Further the 

volume change can be measuredi or strain indicators mounted on the 

specimen to give stress-strain behavior under equal tension. It is 

also possible to insert central or radial cracks in the specimen along 

with suitable sealing, and prepare curves of critical crack length as a 

function of applied pressure. It is suggestedi however, that it may be 

of more immediate value to explore the results of some of the tests more 

readily adapted to current equipment, and exploit the resulting data first, 

before considering the types of tests outlined in (b) and (c). 
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E. Selection of the Failure Criterion 

It is practically impossible to select a failure criterion without fairly 

complete experimental data, although some inte:::-esting comparisons can be 

drawn among the available criteria. In order to illustrate the type of corre­

lation being sought and how it might be treated, we shall discuss three cri­

teria thought to be among the more likely candidates. 

1. Illustrative fracture criteria 

The criteria considered are maximum distortion energy based upon 

stress, maximum distortion energy based upon strain, and maximum normal 

strain. 

a. Stress distortion: - In t:b..is case one assumes that the sum o£ the 

squares of principal stress dif!erenceto.,which is proportional to the stress 

producing a distortion as opposed to dilatation, is constant. Furthermore, 

the constant (J . is determined from the uniaxial stress at fracture* so that 
un1 

(37) 

Note that for the uniaxial tensile specimen, ~l = c-2 = 0 , and G3 = v uni 

as expected. 

Consider now the same specimen, but in addition let it be subjected 

to a lateral pressure stress (D, l above) such that v1 = Vz = k c-3 . (These 

latter stresses are equal from consideration of the equations of equilibrium. ) 

The allowable stress is then found upon substitution into the criterion to be: 

1 
(38) 

[1 - {< I 

Actually the stress at yield., in usual applications., where the onset of 
yielding is defined as failure . 
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which variation is shown in the 

sketch . It shows. that a lower than 

purely one dimensional allowable 

stress would be expected if the side 

stress was compressive, whereas a 

higher value is anticipated for tension. 

Note that no limit stress is predicted 

if the stress distribution approaches 

hydrostatic tension. 

Test results for a pressurized specimen would thus be plotted on the 

predicted curve, with correlation tending to substantiate the stress dis­

tortion criteria. 

b. Strain distortion: - If now,on the other hand, one were to pos­

tulate that distortion shearing strain was to trigger failure, then the cri­

terion in terms of principal strain would be 

(39) 

Upon taking account of symmetry in the stress -strain relations such that 

t 1 = c2 • one has for the same 

loading condition on a pressurized 

specimen as in 3:.• above 

~ 
E I= E.2. = ~ [ - v ... ( l - v ) k J (40) 

(41) 

Thus, substitution into the criterion yields for the allowable strain compared 

to that in the purely uniaxial stress condition 

= (42) 

which is easily checked by taking k = 0 . For the more general triaxial 

stress condition, however, the criterion becomes dependent upon not only 
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the amount of triaxiality k , but also Poisson's ratio, v . This variation 

'3 

:~:~-~::: 
-3 -2. - i 0 

is shown in the sketch. Perhaps 

the most interesting observation 

which can be made is that for Poisson's 

ratio of one half, typical of incom­

pressible materials, the predicted 

maximum allowable strain due to 

triaxial stress is identical to the 

maximum (uniaxial) strain. Hence, 

if substantiated by test data, one 

would expect that whenever the strain at a point in an incompressible media 

excee'ds the one dimensional value - which is actually the maximum principal 

strain criterion - failure would be predicted. Note also that while precisely 

true for v = l I 2 , for "l- 1 I 2 t h e coincidence is quite close over a 

large range of stress ratios. 

Note finally that no limiting strain is predicted if the strain distri­

bution becomes hydrostatic tension. 

c. Maximum normal strain: - A criterion based upon this premise 

is one of t he simplest to use because it requires only a knowledge of how 

much (principal) strain can be imposed, as determined by a uniaxial stress 

test. Furthermore, in the particular case of a combined field, it corre­

sponds for an incompressible body to the distortion strain limit. As in any 

oi the cnteria, however, test data is required in order to establish t he 

validity of any particular postulate. 

2.. Various combined stress fields 

The selection o£ a criterion is difficult because, if wiversally appli­

cable, it must work for any combination of stresses. In the general situa­

tion, there are three principal stresses, each of which may be either tensile 

Ol" compressive. A convenient way of representing the combined stress is 

to plot t he stresses at a point in terms of rectilinear coordinates (101 , c-z, c-3 ). 

Thus any state of stress will fall in one of the eight octants. Normally, 

howeve r, any single experiment will only check out one or two of the octants, 

and thus several tests or types of testa must be carried out to test t he hy­

pothesis in tension-tension-tension, tension-compression-compression. etc. 



-32. 

With propellant materials, and especially filled propellants, there is an ad­

ditional complication because of t he potentially different behavior of the ma­

terial itself in tension and compression associated with pull-away of the filler 

from the elastomer. 

Notwithstanding the difiiculty in the experiment or analysis, it is 

considered expedient to establish as many fracture limits as possible in the 

various octants to permit the establishment of a temporary working hypothe­

sis, crude as it may be. We consider first the case of unfilled elastomers. 

3. Unfilled elastomers 

a. Possible criteria for fracture:- Most materials evince three 

distinct regions of mechanical interest. There is an initial region of elastic 

behavior in which energy is stored up reversibly. In the case of a metal, 

this behavior extends only over a few tenths of a per cent of strain, which 

strain is recovered completely without hysteresis, and the associated stress 

is linearly related. In the case of a cured rubber, the elastic behavior ex­

tends out to several hundred per cent strain, which is recovered completely 

without hysteresis;the associated stress, however, is related in a n on-linear 

fashion as indicated by eqn. (la ). In the case of a plastic, the elastic range 

may barely exist. When it does, as in the case of polymethyl methaerylate, 

it extends only over a few per cent, and may or may not be linear over the 

whole range. 

The hysteresis phenomenon arises from internal frictional processes 

and gives rise to the study( 3 1) of viscoelasticity*. Most viscoelastic materi­

als are linear in their flow p roperti es and obey the principle of temperature­

time equivalence as discussed earliern6>. This makes for convenience in 

superimposing data obtained at various temperatures. The distribution 

function which characterizes the friction processes embraces a large range 

of materials from unfilled rubbers to plastics (see the fifth progress report), 

so that it is common parlance to talk of reduced equations of state for poly­

meric materials in general. 

* The term viscoelastic, as used here. is distinguished from plasticity by 
being restricted only to materials which recover completely, or almost 
completely. 
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When a filler is introduced into an elastic material, new types of 

friction processes are introduced. Thus, cured rubber which is essentially 

non-viscoelastic at room temperature becomes highly so when filled. The 

rate and frequency dependence of the associated relaxation in a highly filled 

rubber does not appear to be linear, nor does it appear to obey the tempera­

ture-time equivalence principle. For this reason, special techniques are 

needed for analyzing data on filled rubbers in the elastic region. A further 

discussion of this will be presented at a later time. 

As the strain is increased, most n"laterials at some point begin to 

show marked deviation from elastic behavior. If the substance is a tnetal, 

it may suddenly undergo plastic flow in which case the yield point is clearly 

marked. A rubber or propellant on the other hand will start to tear with no 

marked yield point. A plastic will in some cases undergo plastic flow and in 

other cases fracture in a brittle fashion, depending upon the rate of straino 

After yield, local stress conditions predominate in most materials. 

Depending upon the state of purity or the method of sample preparation, a 

given specimen will contain a number of defective or weak sites which will 

act as loci of stress concentration. For polymeric materials, it is generally 

trt.le t hat t he more brittle the material, the less sensitive to defects is the ul­

timate or fracture stress, as in the case of a plastic or rubber below its 

transition temperature. In the case of a h i ghly filled rubber tested at room 

tem.perature , large batc h -to-batch variations in tensile strengtJ, are ob­

served despite careful efforts to control the formuJa tion. Thus. in dealing 

with suc h materials, it is better not to use the fracture point but rather the 

yield point for design purposes, which of course has the further advantage of 

being conservative. 

As enumerated earlier, various criteria have been proposed to define 

t Le point at which yield or fracture will occur. In addition, it should be noted 

tl1at for large strains it is necessary to distinguish between t h e mean devia­

tu1•ic stress(37) and the distortion strain energy(9). In particular, the ma:xi­

rnum st:rain difference is defined as the difference of L'-le finite strain 
2 2 (1 /Z)('A. - A_. ) • The mean deviatoric stress is obtained by substituting (2)and (9) 
1 J 

into the express ion 

(43) 
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Note that this expression, after squaring, does not yield the distortion strain 

energy proportional to I 1 -3 as is accomplished in infinitesimal theory. Thus 

a new criterion develops for elastomers. Lastly, the total strain energy is 

identical to the distortion strain energy for an incompressible material. No 

further allusion will be made to total strain energy until dealing with filled 

elastomers. It is instructive to tabulate these criteria for an incompressible 

material subjected to both uniaxial and biaxial tension. Since we are dealing 

with elastomeric materials, finite elastic deformations must be accounted 

for. In Table I, the ultimate value of the uniaxial extension ratio , 1\ , is 

chosen as the independent parameter and all other yield criteria are tabulated 

in terms of it; one must of course be careful to compare yield values with 

yield values and fracture values with fracture values. Numerical values for 

these quantities characteristic of cured natural rubber are presented later 

in the discussion. 

Some comments regarding Table I are in order. First of all, note 

that for the uniaxial stress field all the yield criteria with the exception of 

the maximum principal strain and distortion strain energy are proportional 

to the same factor ( f1- - A - 1 ). A similar situation holds for the equal bi­

axial tension case, except that the factor is ()., 2 
- 'A - 4 ). In both stress 

fields the ultimate stresses are simply equal to the ultimate strain times 

twice the shear modulus. Second, if the strains are large, all of the cri­

teria are proportional to A 2 
• One might suspect therefore that the prob­

lem of defining an ultimate criteria for an incompressible elastomer is 

straightforward: measure A at yield (or fracture) in any kind of stress field, 

and as long as '1\ ~ 3 the error made in failing to distinguish among them 

is of the order of 5 - 10°/o. If, however, the fracture strain is small, of 

the order of ZO to 30 percent as it may be in actual rocket motors, the cri­

teria will depend upon the stress state. The similarity of the strain pro­

portionality factor for many of the criteria implies, however, that it may be 

sufficient when designing experiments to contemplate testing the hypothesis 

in only three of the original seven of Table I, namely (i) mean deviatoric 

stress (stress distortion), (ii) distortion strain energy (strain distortion), 

and (iii) maximum principal (normal) strain, as suggested earlier in this 

section. 
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TABLE I 

Uniaxial Equal General 
Yield Criterion Stress Field Stress Field Stress Field 

1 maximum principal strain A- 1 t\ -1 ;\ - 1. 

2 maximum strain difference i (11 .,_ -k) ~(J\7.- } .. ) ~ (>,~- >-.J) 

3 mean deviatoric strain -k( A~-~) ~(A'--_!_) l~l._ -~I-z.. 2. ;.... .. 2. .,. 

4 maximum principal stress ~ (N-~) r (A 1.- t") r'\~ ., ~ 

5 maximum stress difference )-'- ( ;\~- t} J-A (A~- ~ .. ) !"-(A~ - A/- ) 

6 mean deviatoric stress _.A (;....2.-~) ;...(f--1.-~'t) r v r_~ 3I,.' 

7 distortion strain energy ~(;._'.,t-~) £(2A~~ -3) ~(I,-3) 
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As an illustration of how one might predict the ultimate values of 

the yield stresses and strains in equal biaxial tension and pure shear from 

* uniaxial ultimate data represented by A o consider the following calcula-

tion based upon a maximum distortion strain energy criterion. 

From equations ( la), (Z) and (9), we have 

= ( la) 

-If' I ) .u._(~ --/- >-._¥ 
(Z) 

E(T -3) 2. -I 
(9) 

::~ 

w here 1\ is known from experiment. Now for an equal biaxial stress field, 

using a sub script ~ , t he first invariant is 

I, 6 (44) 

w hereupon equating t he strain energies using (9) and t h e respective values 

of 11 , find 

One root is obviously 

1. v f_'f< I 

w hich corresponds to biaxial compression and is extraneous. The other 

root is 
1 

Y- >-; + ( U'·"1. )1._. z;)\•/ 
• * For large ';\. '" , we have : Ab - X I r2:, which is a useful rule of thumb 

for predicting biaxial failure (large strain) in a rubber w hen t he ultimate 

Wliaxial strain is known. 
- - 1 culated as CT b I CJ uni = z. 

Similarly, the associated stress ratio can be cal­

On t he other h and, for small strains such 

t hat t he maximum value of th e strain energy is small enough so t hat X. 

* may b e approximated by 1 + E , t hen it follows t hat E b = f: I 2 , and 

0: b = cr uni at fracture. 
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For the second case, pure shear generated in a material by applying 

the extension field 

) 

leads to 

For large \ 

whereas if the strains are small 

t 

1 >..*-
2 "y. 

1 t..'~ - 2. ">--'II 

>--*-

v3' 
2 

1. 
).,-lf2. 

(45) 

(46) 

(47) 

(48) 

Returning to specific consideration of a particular unfilled elastomer, 

consider the fracture ·characteristics of gum rubber. The properties of 

the simple tensile curve at yield and at rupture are summarized in Table II, 

along with some predicted and measured values obtained for other stress 

distributions. In connection with these properties, a few comments can be 

made. 

The extension ratio at yield is taken to be b on the basis of the dis­

continuity in the curve of Figure 3. The associated Cl, W and vd are 

tabulated. For large strains, it is necessary to adapt a definition of the 

mean deviatoric strain based on finite elastic theory. It is convenient to 

wo;rk with Murnaghan's definition of strain: 

(49) 
so that 

(50) 
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TABLE II 

Fracture Properties of an Unfilled Gum Rubber Vulcanizate 

(}A-= 1. 76 kg/cm2 , E = 5. 28 kg/cm
2 

P 1 kg/cm
2 

= 14. 22 psi) 

··-
Homogeneous Table I Heterogpneous 

Property Ref. Line Failure Mode Simple Tension B iaxial Tension Triaxial ension 

~ 1 yield 6. 00 *4. 30 1+.6. 82 6. 00 

-c- 4 12. 0 7. 58 12.0 4.85 

wd 7 29. 9 29.9 69.2 29.9 

Vd 6 12.0 7. 58 12.0 4.85 

ed 3 17 0 9 17. 9 44.9 17.9 

~ 1 fracture 7.65 - - -
u 4 32.0 - 32.0 5. 81 

wd 7 62.4 62. 4 - -
, ud 6 32.0 - 32.0 -

ed 3 29.2 - - -

* energy criterion 

-4- deviatoric stress criterion 
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Now define the strain deviators and mean deviatoric strain by: 

e ~ = 
(51) 

= {52) 

after some algebraic manipulation. This is the last yield parameter tabu­

lated. 

Of the five chosen, most liltely candidates for the yield criterion are 

as mentioned earlier, W , c-d and 1\ • To date, the data necessary to place 

these quantites on a firm experimental basis have not been procuredo In the 

meanw~U.le, some predictions will be m;:lde for biaxial and triaxial tension. 

Comparison is established with the only available multia.xial data (20 >, 
In t he first column, under the heading of biaxial tension, it is as­

sumed that rupture occurs always at a given value of the strain energy, ap­

proximately 30 psi. Notice that it takes less biaxial stress, and of course, 

less biaxial strain to effect yield and presumably rupture under this assump­

tion. If, on the other hand, the mean deviatoric stress is chosen for the 

yield criterion (second column), then the sample in biaxial tension fails at 

the same stress level as in simple tension, but at a much higher strain 

energy level. The calculations are carried out with the aid of (2). 

The case of triaxial tension introduces some new features into the 

picture. In the first place, a truly incompressible mater ial cannot deform 

under triaxial tension unless at least one lateral dimension is allowed to 

strain. This can be accomplished for example by bonding a cylindrical sample 

between two rigid steel plates. In this case. incompressibility of the specimen 

is preserved by necking of the sample. Gent and Lindley( 20) subjected such 

poker-chip specimens to tension and found that the stress-strain curve is 

linear up to a point at which the sample suddenly develops an internal void; 

they term this the triaxial yield point. They show, to a good approximation, 

that the average applied stress levelS' (kg/cm2 ) at which the void occurs is 

given by 

sl 
== 

D 1.. J -n' r .!... ... "'J1. 
rML2. a.z. 

(53) 
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where e 1 is the strain level at yield 

a is the radius of the tablet (em) 

h is the thickness of the tablet (em} 

pv is the maximum hydrostatic pressure acting on the yield 

m surface just prior to yield (kg/ cm
2

) 

For samples characterized by h/a = 0 . 3g they measured the yield stress for 

a number of rubbe rs and found experimentally 

s' 0.50 + 

by (53), so that 

= 0. 85 1-

0.55 E. = 

0.94 6. 

..,.,, 
0 . 59 rl"'"" (54) 

(55) 

Insertion of t he tensile modulus of 5. 28 into (55) yields the tabulate d 
z 

v.alue of 5. 8 1 kg/em for the indirectly measured triaxial stress o n the yield 

surface just prior to yield. 

It is possible to calculate h ow the high triaxial str e ss originates. 

Gent and Lindley assume that a tiny m icroscopic void is present to start with 

at the c enter of the disk. They assume further that the void is stretched 

radially like, a spherical cavity, and they com pute the stress pv as t he 
m 

point at which the cavity becomes infinitely large . This treatment can b e 

modified for two reasons. First, when t he cavity has grown largeg the 

radially symmetric stress distribution will be come distorted. More over, 

from the start the cavity is not being elongated equally in all three directions. 

A ctually, it may be more like extension in t he direction normal to the flat 

specimen with zero displacement in the two transverse direction s. Since 

s u c h a displacement field is impossible for a cavity in an incompressible 

medium, however, it may be assumed that the cavity is a small cylinder, 

lying with its axis perpendicular to the pull direction, and being stretched 

radially with its axial length held fixed. T h is will be closer to reality than 

the case of t he spherical cavity. The solution of this problem is a classical 

case in finite elastic theory (IS) the details of which need not concern us here. 
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Suffice it to point out that the radial stress in the medium around the 

cavity is given by 

where the bar over the stress symbol indicates true stress and 

is the radial extension ratio 

a is the radius of the undeformed cavity. 

Far away from the cavity, ~ -1 and the stress approaches P 1 • m 

(56) 

(57) 

Likewise, the tangential stress at the surface of the cavity is given by 

= (58) 

which, for ~ > 3~ behaves exactly like simple tension; this checks the 

facts because the surface of the cylinder is assumed to stretch tangentially, 

but not axially. On this basis, we choose the yield value for ~ to be that in 
a 

simple tension, namely 6. 00. Substitution into (57) yields for P 7 a value of 
m 

4. 85 kg/ em 
2 

(tabulated under the heading(} at yield), in excellent agreement 

with the measured value. Furthermore. it is to be expected that the measured 

value will be higher since it is a measured break rather than yield. 

The fir"st strain invarient under the radial stretching of the cylinder 

is given by 

. I, (59) 

so that using (9) 

0.883 ( ~'+.o) = 2 9 . 9 (60) 
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Thus the strain energy remains constant as in simple tension. With adrn ittedly 

only fragmentary evidence it appears that it may not be a poor assumption 

to take W d as the yield criterion. In this particular case, the criterion states 

that this particular gum rubber vulcanizate cannot sustain more than 30 kg/ cm
2 

or 425 in-lbs/in 3 of strain energy density without yielding. It is sugge sted, 

ho·wever, that similar experiments to those of Gent and Lindley in both 

tension. and compression be expedited to provide the data needed to define 

the yield criterion. 

b. Illustrative example:- On the basis of the suggestion made in 

the previous section, it seems appropriate to apply the strain energy criterion 

to a practical problem in order to demonstrate its use. In the strict sense of 

the word, finite elastic theory should be used, but since not many design 

engineers have familiarized themselves with the intricacies of1his treatment, 

an analysis based on infiniteS'imal t;heory will first be presented. We consider 

the classical case of pressurization of an infinitely long hollow bonded cylinder 

in an elastic case. Since the nomenclature from hereon is familiar, inter­

jections will be sparse. Superscript bar refers to properties of the metal case. 

Using ( 9) in the form 

(61) 

with p as the internal pressure, one finds upon the appropriate substitution 

that at the inner surface 

(1-Zv)z(Cl./b)'(1-¢)1. + 3(1+¢ -2.v).l. 

Li + cP - ,Z v -+ ( a.fb ) a (1- d> ) ] 2. 

where <P = ~ [1-(3-2-J)/S} is the effective case rigidity . 
.?-

(62) 

For an infinitely stiff casep for example, and typical large web 

fractions, 

(63) 
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which upon using Wd = (MZli
1
-3) from Table II, gives a maximum internal 

allowable pressure of 170 psi. Figure 16 shows how W d varies with Poisson1s 

ratio for the particular case when q, = 0. 004, a/b = 0. ZS and p = 1000 psi. 

Note that W d increases very rapidly as ..Y falls below t. The need for such a 

large strain energy will in part be eased by relaxation effects in the propellant. 

But a very important reason that results in these high values lies in the 

error made by assuming small strain theory out to rupture. The error made 

is akin to assuming that the initial slope of the tensile curve remains 

constant to rupture . Thus the value of 900 psi is not to be treated as 

universal, particularly when large strains are involved. On the other hand, 

calculations of this sort based on small strain theory do become more meaning­

ful at low temperatures. There the stress-strain curve does become lindar, 

while the ratio of )'- to)-'- increases, as does the relative case rigidity effect. 

Because it is extermely important to be able to apply the strain energy 

criterion to practical cases, the finite elastic analysis of the infinit ·~ ly long 

internally pressurized cylinder is carried out in Appendix 5. 3 in order to 

show the large error engendered by small strain theory. Actually. the 

analysis is merely an extension of tha results that were presented for the 

cavity. In order to keep the analysis fairly simple, it is necessary to assume 

incompressibility. The analysis can be carried out for a con1pressib le 

mat erial with a bit more difficulty. but for present propellant materials. a 

representative strain energy density f unction is not available. 

The re.s ult given for the assumed incompressible material 

WJ = 
t> 1. <:1:>. 

2 ua;b) "P ct> + )-1- (Q/b)l] 
(63) 

T-> ( a;'b)t A~ - 1 ) 
-= (64} 

? ct> 

which is the large strain analog to (62). For small case ri gidities. 

(65) 
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and it is easily seen by comparing {62} and ( 65} that the ener gy increases 

quadratically with pressure in small strain theoryg but for lar ge strains 

approaches a linear asympto-te in pressu re. 

Thus this illustrative calculation demonstrates that if the strains 

are large, much lower demands will be placed upon the allowable strain 

energy than were indicated byg for example. the 900 psi figure obtained 

by extrapolating the small strain theory. 

4. Filled elastomers 

Returning now to the practical prob lem of rocket grain analysis, 

it is clear that fracture prediction will not be nearly as simple for highly 

filled elastomers or propellants, since the m at e rials are compressible 

and yield at strains as low as 20 percent (\. = 1. 20} where as can be seen 

from Table Ig the criteria depend upon the stress state. 

a. Possible fracture criteria:- It has been suggested that, in the 

case of unfilled elastomers. the distortion strain energy adequate ly represents 

the onset of fracture or yield • In the case of filled elastomersg two factors 

complicate the situation; one deals with the cutting of the polymer chains on 

the sharp edges of the filler engendered by the high local stresses around the 

particles. the other is the generation of voids as the binder is pulbd away 

from the filler. C ne simple modification to the strain energy function to 

account for these factors can be proposed. 

The first modification deals with the c u tting of polymer chains. This 

inference is borne out by constant strain test data (i) as strain is increased. 

time to rupture decreases. (ii) at a given strain, the modulus decreases with 

time. Thus, from stress relaxation studies at various strain l evels. it is 

possible to correlate the modulus with some function of time and strain level 

and also temperature. The strain energy crite:rion now be comes: 

w = {66) 
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Secondly. the void volume must be account ed for since the strain 

energy is defined per unit volurr.e of unstrained material. If 13 is the 

void fraction engend~red by pullaway at a given X., then (66) becomes 

= (67) 

where W d is now measured on the sample including voids. Measurements 

of void volumes can be done microscopically on thin films. 

l'ntil more definitive data becomes available no attempt will be 

made to present an example of typical calculations using actual propellant 

material properties. 
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F. Cumulative Damage Theory 

In any discussion of failure theory, it is necessary to show the 

correlation between experimental data accumulated at constant strain 

rates*and actual test and environmental conditions wherein the strain 

rate may change slow or fast during the time under consideration. It 

has already been proposed in the third progress report that one may 

use a cumulative damage concept similar to that used in fatigue analysis 

to account for the amount or percentage of resistance to failure used up 

as the strain rate takes on various values during the loading cycle. 

Since the proposal in that report. McCullough has had occasion 

to run a series of preliminary room tempe rature tests to fracture on 

tensile specinJens in an Instron tester at, constant and mixed strain rates. 

The degree of correlation obtained has been somewhat encouraging even 

though limited. It shows cumulative damage tests only 15 to 20 percent 

different from predictions based on constant rate data, with the standard 

deviation being somewhat lower for a strain rather than energy basis of 

correlation. 

Further remarks along these lines will also be withheld until a 

later time. 
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A PPE NDIC ES 
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APPENDIX 5. 1 - Stress Analysis of a Thin Clamped Disk 

In the course of analyzing failure characteristics of propellant 

specimens, it was indicated that one could test under essentially hydro­

static tension conditions by cementing a thin disk, or poker chipg of the 

material between two rigid (steel) supports and exerting tension in a 

direction perpendicular to the faces. Under such loading, the center of 

the specimen would be subjected to a three-dimensional tensile stress. 

The elementary analysis of the problem, assuming the disk radius is 

infinite such that plane strain oonditions holdi leads to the result that the 

radial and circumferential stresses are equal and, for an isotropic homo­

g eneous medium with Poisson ratio, v , proportional to the applied axial 

stress \) • z 

v ()1. 
1- -v 

(1} 

It may be noted that for an incompressible material not only is the stress 

state triaxial, but it is also hydrostatic leading to there being no shear 

distortion in the specimen. 

Coupon tests have been employed by Gent and Lindley ( 20 ) in their 

experiments upon rubber and by Lehrer and Schwalzbart* in metals. The 

purpose of the following analysis is to calculate the stress distribution in a 

compressible thin disk of finite radius. 

Gent and Lindley were primarily concerned with displacements and 

in 1heir analysis employed what was equivalent to a minimum potential en~rgy 

solution to predict deformations and an apparent modulus. However, for their 

approximationg a variational procedure was not used because the only free 

constant in their analysis, the amplitude of the assumed parabolic deformation 

or bulge, was fixed by the condition of incompressibility. While it would be 

straightforward to extend their analysis by introducing a higher order 

deformation shape and provision for compressibility, it does not seem 

warranted at this time because our current interest is concerned with 

stresses. 

*Static and Fatigue Strength of Metals Subjected to Triaxial Stresses" 
Institute of the Aeronautical Sciences paper no o 60-12p January 1960. 



Complementary energy analysis 

The stress analysis will be carried out using the minimum 

complementary energy principle 

for a disk of thickness Zh and 

unit radius. The faces z = + h 

are assumed to be rig idly bonded 

to much stiffer s uppor ting plates. 

We may the refore formulate the 

. ..f.. 
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/ / r 

problem, assuming circumferential symmetry, as requiring the satisfaction 

of the field equations of equilibrium 

+ (2) 

0 ( 3) 

and compatibility 

I d 
1-+V 

0 ( 4) 

( 5) 

+ 0 (6) 

+ 0 (7) 

wher e \fl) :=: Vr+ v" t ~e . The boundary conditions are on the faces 

'\J- ( .[) 8 ) "! --R ) \) (8} 
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tWo (9) 

and on the unloaded circumference 

() I GJ c ) = 'l~~ ( l > 8 _, ~ J = 0 -r . ) ) " l "1:. 
(10) 

The elasticity solution to this problem is a formidable one .which is 

the reason for using an energy approach. The theorem of minimum 

* complementary energy requires that a proposed stress state is admissible 

if 

a) it satisfies the stress equations of equilibrium 

b) the boundary conditions on that part of the boundary 

where stresses are prescribed. 

Inspection of (2)-(7}, and (8)-(10) indicates by implication that the compatibility 

equations may not necessarily be satisfied, nor may tha displacement boundary 

conditions (8) and (9}. The theorem however guarantees that if there is some 

arbitrariness in the proposed stress state, it may be adjusted by minimizing 

the complementary energy 

J.. 2.'il l 

V * s J J [ 2~ [<J/ ~~a].+ CJ~LJ ~ [ <J,<Je .., Va CJ~ t (Jlc-, j t-
2

'G 'l-1~} rcl-rdGdt 
"l..iO I ( 11) _g. 0 0 

-2 J J ve(-r.J..t,.)\Jord.rdG 

0 

to give the best possible averaged satisfaction of the compatibility and 

displacement boundary conditions. 

The heart of the problem lies in the initial choice of the admissible 

functions which is accomplished mainly by intu ition and experience. Without 

any rationalization at this time, consider the following set which was chosen 

for reasonable simplicity in the subsequent algebra required. 

v,. ~Ali- -r"] cosh 1/~ l:. 
l--Y V 1-V 

(12) 

<le = 
(13) 

* See Sokolnikoff, Mathematical Theory of Elasticity, McGraw Hill, 1956 . 
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( 14) 

( 15) 

It will be found upon substitution into (2) and ( 3) that the equilibrium 

equations are satisfied, whereas insertion of r = 1 into (12) and (15) 

satisfy ( 10). The function set is therefore admissible, and furthermor e 

contains a degree of arbitrariness represented by the, at present, unknown 

constants (J P A, pp and n. These latter constants will be determined by 
0 

minimizing V*P e. g. 'OJ V* I Cl Cl
0 

= 0 , etc. 

In passing it may be noted that the exponents n and p must exceed C 

and 1 r e spectively in order that infinite stress e s are not introduced at the 

origin. Also the set has been chosen in such a way that at the origin 

r = z = 0, 

1- -v (1 ) 

to yield the desired limit as the disk thickness approaches zero, or, what is 

the same, the radius of the disk becomes infinitely lar ge . Finally [/
0 

, 

although unknown, may be ~dentified as the average tensile stress acting on 

the face to cause the deformation w . 

For convenience, we define 
0 

2-V 

\-V (16) 

and proceed to insert (12)-(15) into (11) to obtain the complementary energy 

as a function of the parameters, V* = V*(A, u , n, p). After the intergration 
0 

and algebraic reduction, there results 



Where the following notation has been employed 

s. 

= 

Ss 

t, 

t '!. = 

(-p -1)1. 

2p 

h(P-l)(h + T->-~: 7) 

"'! ( 'P + ~) ( Vl ... P-+ !.X Ltt + 4 ) 

.<:\ ( ?+ ~ \ ( ? + 1 ) 

1> ... 15 

b(P+3.) 

The minimizing condition rJV*/ o A = 0 leads to 

A "" 
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:,(_ P+ i) 

(28) 



while a V*/ Q) G-- = 0 in conjunction with (28) gives 
0 
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which value of c- can be inserted into (28) to determine A = .A(w ). With 
0 0 

A and c- known as functions of (n, pg w )1 they can be inserted into ( 17) 
0 0 

to find 

Jk' v = 
'k-v ( r-, t> > w~) (30) 

In principle , thereforeg one could add the additional mm1m1z1ng conditions 

aV*/ Cl n = C and ()V*/ o p = C a.nd find finally nand pas f t;_nc tions of 

the applied deformation w and of course the thickness parameter h. Henceg 
0 

all the constants A, () ~ n, and p ar e known in terms of w and h and can be 
0 0 

placed back into the stress distribution (12)-(15) to give the final approximate 

stresses. 

From the algebraic standpoint, however, it proves siropler to try 

various values of n. and p. in (30) and compute the corresponding value of 
1 J 

V*. There will be some pairs that will give the algebraic minimurr. by this 

trial and error procedure which is equivalent to applying the minimizing 

conditions. 

At this stage in the analysis, it is worth reexamining the necessity 

for finding this stress distribution with due consideration to the computational 

work involved. At least one solution is now available, but it may be worth 

investigating other f unc tion sets to s ee if they may be computationally simpler. 

Furthermore, it is recommended that any computations be first carried out 
2 

for an incompre ssible medium, .Y = t, -Y }A- = 1. 

If additional work on this solu tion or variations of it are thought 

warranted, it will be reported at a later time . The only q ualitative statement 

which can be made at this time is that the true values of n, p will probably 



be fairly large corresponding to a stress distribution fairly close to 

( 1) over a large part of the central portion of the disk. One major 

limitation of the technique is that both n and p will depend upon the 

width/thickness ratio of the sample, so that a parameter study of 

-54 

the latter ratio would entail an iteration of the computation of n and p. 
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APPENDIX 5. Z. - Crack Propagation in Viscoelastic Media 

In the body of the report, the stress distribution near a small 

crack in a large thin sheet subjected to a uniform tensile stress was 

discussed. Further, it was pointed out that the viscoelastic and elastic 

stress distributions are the same for this loading, thus leading to the 

possibility of computing the viscoelastic strains and displacements from 

the basic elastic information. The purpose of the following analysis is to 

use this information to predict crack propagation characteristics in a 

viscoelastic medium. 

From the basic solution (2.
6 ) the biaxial stress distribution in the 

plate strip subjected to a tension <5
0 

is 

t t t t t t t ao 
'X>\::> {1-a) 

. 
' l:>~ J 

_<~-I +O[(;~t}+--·\; 

"v'- b+= 
..... - (Z.-b) 

FIG. S. 2 21 

where it is clear that the stress becomes infinite as the point of the crack 

is approached. In order to circumvent the necessity for conducting a large 

strainp elasto-plastic solutionp it will arbitraily be assumed that the stress 

may build up to a specified value at a distance ~ from the crack tip and remain 

constant throughout the interval 0 -:S. x-b ~ b until an ultimate one-dimensional 

strain C. * is reached. 



\ 

\ ~ 
v--~~t:­
\ b (j !----..--., 

max \ 

' 

FICS. 5.2 .b 

'X= b+G 
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It should be observed that the elastic 

solution is no longer correct, because 

the specimen, by the equations of 

equilibrium, is presumed to be 

absorbing the stress indicated by the 

dashed line. Thus the load represented 

by integrating the stress between x = b 

and x = b + S is not accounted for when 

the truncation is made. Therefore the 

actual stress distribution would be more like the dotted line, with the additional 

area accomplishing the necessary force balance. On the other hand, because 

rr-x 
I 

CRACK 

FI(S, 5.2 C 

this (dotted)distribution cannot easily 

be calculated, and because it is desirable 

to still have the force balance, the analysis 

will be carried out using the modified 

truncated stress distribution shown in 

Figure 5. 2-c on which areas A 1 and Az 

are equal. If the existence of such 

quantities as E *and ~ can be e stab lished 

by experiment, then the following 

analysis could lead to useful results. 

Visualize then, the conditions along the line of crack prolongation. and 

assume that the internal forces along the shear free line are carried, for 

simplicity, by a series of discrete Voigt elements averaged over the characteristic 

length b. The mechanism postulated is that each element will strain as a result 

of stresses ( rS and ~ ) which are constant over the length 6 assigned to each 
X y 

element as shown in Figure 5. 2-d. The valuesof these stresses are determined 

CI2ACK. 

from equations ( 1) and ( 2) and the 

equilibrium condition discussed earlier. 

Namely we assume that for a crack 

width 2b, the stresses acting on 

(n) are the average values: 



t>+(}\+l)~ \;>-t(n+l)~ 2 

<5"' I ( <S b<) I ( S b 1 d X T=r) o! dx =T) l \+i-x ~-- ~~l-x+fX~-P·]) 
0 bHl~ \;.+~1 ~ 

(3-b} 

2 r, ..L _j_] 1gc ~ ~-. z ~It> r. 4 ,., --ii S/bl(YI-+t)z.-Y\2 + ~fT l(n l)~n~ ~ + 2 l(n+t)- 'r1 J +---

After the strain in the first element r~ches e *, it will break and the 

st-ress distribution will shift by one b width; i.e., the stress which had 

been acting on the element n is now acting on element n + 1, where the 

effective crack length to be used is 2 (b + ~ }. After m translations, or 

after element (m - 1) breaks, one has 
(m) 

c5 Yl"a 2 ..L ..L -b ~ _a_ .:!. 
~= -yz ~/(b+m~)[Cn-m+l)z_(n-m) 2 J + 4 V b+~[Cn-m+1)2- (Yl-m)z]+·· . (4-a~ 

($ lm) 

=~+ 
cr. 

To reiterateg
0 ()~;is the average stress acting on element (n) before 

element (m) breaks 11 but after element (m-1) has parted. Thus, the 

stress at the crack tip is given approximately by 

(j(m)~ 2 cSo ~ <m) (4-b) 
m~-1/ t:to - ()Yf\"'>( + (j'o 

V +m& 
It is clear that if ~ is assumed to be a fixed characteristic dimension, 

the stress acting on the element at the _crack tip is not limited, but 

increases with crack length. However, in the initial stages of crack 

growth (m ~«.. b) the stress is practically constant a s seen from 

equation (4-b). 

Since we now have the two-dimensional stresses as a function of 

crack position, the time dependent strain in each element can be foond 

from the plane stress~> stress-strain equation. For an elastic material, 

we have 

E =-1-(<J -1}6) d E. 'a ")( (5) 
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For simplicity we will assume an incompressible medium ( V =~). The 

viscoelastic strain is obtained in the usual manner by replacing E by its 

equivalent differential operator, which for a Voigt model is ( 
1

) 

where 

Ev · = modulus of the spring in parallel with a dashpot 
with viscosity T) 

1: =~ = retardation time of model 
v 

(6) 

Insertion of (6) into (5) yields the viscoelastic stress-strain equation which 

applies to each element 

L dE:1 __ I [ ~ 1 1 
dt + ~'d - e:,., u1- Z <f-x J (7) 

= Z~y [ 6'1-+ o'o] 
In terms of the notation used in equation (4), equation (7) becomes 

(8} 

where E~)is the strain in element (n) before element (m) breaks, but 

after element (m-1) has parted. If we denote the time at which element(m) 

breaks by t , then equation (8) applies to the time interval t 1 <. t <. t . 
m m- - - m 

In this time interval the right hand side of (8) is constant so that we can 

integrate it for the strain: 

(9) 
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where 
0"-l)b . . En 1s def1ned as the strain existing in element (n) at the time 

element (m-1) breaksv which is tm_ 1 . If we set t = tm_ 1 in equation (9)v 

the initial condition 

E C~) (t '\ = E.(m- t) b 
n m-• J n 

is satisfied. Letting t ~ oo , we have 

which is the long-time or equilibrium strain that would result if element (m) 

did not break. It is seen from equation(lO) that this is a known value if the 

crack position is given. Therefore as a matter of convenience we shall 

write (9) as 

-t -tm-1 
E(m) Efm> r G<m-t)b ,..._tm)] e.- '2::: 

l'\ - ne.+ L Y\ - -='rle. 
"t~-1 ~ "t. ~ tm 

and the strain at the time when element m breaks 

t-t 
(m) b (WI) [ (l'l'\-1) b (m) 1 - ~ m-l 

G = ~ne.-+ E:h - E::he. e n 

(11-a) 

(11-b) 

This expression can now be used to calculate the time at which each element 

breaks and hence will give the crack velocity as a function of time. 

Consider first the strain in element zero for 0<.. t <t , so that 
- -0 

n = m = 0 and 
t-t., 

E (o) E (o) + [ (-1) 1:_ E (o) J - '2::. 
0 oe ~0 oe. e 

in which we must define t 
1 

= 0, E(-l)b = 0 to satisfy the initial condition 
- 0 

that the material is unstrained at t = 0. Hence 
t 

E <.o)= E. (o) r I- -e. -7:] 
o oe L 

element (0\ breaks at t = t when E. (O) (t ) :::; €
0

(0)b = E *, 
/1 0 0 0 



Solving for t , 
0 

;
0 =-k[l-
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(13) 

which is the time that elaps es before the crack starts to run. From equation 

(10) 

assuming 

E(o)= 
oe. 

Equation (11) gives the strain in the next element at t = t1 as 

In order to find tl" E 1tp,b must be determined from (11-b) and (12) 

1: €}~) 
{o)l:>- G (O) [ 1- - ; ] = I e. E: • e, - •e. e e<o) 

oe. 
Inserting this expression in (15) and solving for t 1 , 

(14) 

* w ~ 
t,= 'to_~SE~1 -6•e. ~=~+k~l+ E*[l-€.,e./E~~l{ (1

6
) 

'2: "t l E,e c'*-E''> 2:. l E ('l - E"' ) 
etol .~ .e. 

oe 
It is observed that all o£ the strains appearing are equilibrium values and 

are thus known from equation ( 10) . By assuming that the strain E * at which the 

element breaks is much smaller than the equilibrium strain e<l) , or 
I e. 

equivalently that the retardation time 1:"is much larger than the time interval 

t 1 - t
0

, equation (16) simplifie s to 



Using (10J and assuming .i. << 1 , it is found that 
b 

E*:jz ~/b ( 2-'(2) 

\.. 6 0 /E.") 

The initial velocity of crack propagation is given by 

lt = ~ - ~12:. 
1 i; -t -tl -"to 

I o 

and from ( 17) is approximate ly£: 

v:= a'o/Ev~ 
1 2: e• Z (12- I) 
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(17) 

(18) 

As a rough means of e stimating ~ , consider McCullough' s preliminary data< 25) 

Figure 15 in the region of constant stressp from which V-::::;. 2 x 10- 3 in/ sec, 

~ 
0 
* 20 psip b = O. 2 inches. Using typical room temperature properties 

give s cf,~ 10-
3 

inches, which does not seem to be an unreasonable magnitude 

and may be thought of as a characteristic strand diameter. Note, as 

hypothesized b /b<< 1 

Calculation of crack tip velocity as a function of tip location. -

With these res ults appearing reasonable. it is appropriate to extend 

the analysis and obtain an expression for crack tip velocity as a function of 

crack growth. To do this, the expression (11-b) for E (m )b must first 
n 

be expanded so that all of the strains which appear on the right hand side are 

the known equilibrium values. It is seen from (11-b ) that 6 n(m - 1)'? m u st 

be replaced by a function of equilibrium strains. If we write 

(m-l)k:> . (m-l) [ tm-z).P (m-O] - tm-1- i:ll\-z. 
E 11 ·- €Y'Ie + Eh - -=ne e. '2: 

"t. h (m-1)b. . f "l"b . t . d ~ (m-2)b 1 1s seen t at E 1s 1n terms o equ1 1 r1um s ra1ns an = . n n 
Continui,ng ¢is process until the only non-equilibrium strain in the expression 

for E: (m:I)b is E - 1b :: 0, we obtain the desired expression for 6 (m-l)b. 
n n n 

Sub stitution of this r e s ult into (11-b.). leads to the representation 

(19) 
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-1 t 

whereg as beforeg we hav e d e fined Ene. = -l-= 0 • Noti ng that 

E (m)b is t he s tra in in e l ement (m ) just when e l ement (m) breaks~ and 
m 

i s therefore e *~ 

(20) 

S ince all o f t he s trai ns in t hi s equation are kno wn, a s giv en by ( 1 0 ), equation 

(2 0 ) can be u s ed t o sol ve explic i tly for crack tip velo cit y 

tr. - ~ - ~~_1_1::-;---~.,-
m- t -"t - (tm- t~-1 )/-z: ,.., 'rn-1 

in which V is the velocity when the tip is a t e l ement (m). It will be m 
c o nvenient t o rewrit e (2 0 ) in the f o llowing form 

1'n = o, 1, Z, ---
(2 1) 

where we have defi ned 

t..,- "tlt\-1 

IX.,..= 1- -e. "C 

To i llustrat e the s ignificance o f (2 1 ), it is expanded fo r m ::r 0 , 1. 2 ~ 3: 

m=o: (22- a) 

( _1£ _ t 1-to ( I ) _ "t,-t. 
G~ = E 1~ [1--€. '2:] e. c + E 1e.[1-e. "2:. 1 (22-b)' 

'!:i t.z.-to <•) t,-t,.. ;:l-it' (~)[ trt1l (2 2 cJ 
ln=2: e.'*= e~~[l- e-2::]€ "l:. +EzeO-€-·~-].e: +Eu 1-e ~ J -

(23) 
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Utilizing (22-a) for E *P we can rewrite (23} as 

WW\ 'm-1 E(,j) w· --= I -L. lnC. ....:::...L (24) 
Wo j':ao Cj) W'"o t:. 

Je 

where 

'l.Um 
lrn) 

D(lrl Eme -= ----ur., G~Cl) o< 
oe " 

If it is further assumed that only the first term in the equilibrium strain ( 10} 

need be considered ~ i.e. , that the strain resulting from the leading term in 

the stresses (1-b) and (2-b) provides the main contribution to failure) then 

from (10) 

(25-a} 

and 

E('hl)~ cro 
me. E"~ 

(25-b) 

"\'b+ mo 
Substituting (25) into (24} gives the recurrence expression for ~ : 

we. 

Calculations give, for example 

W"o = 1, \.71J 2,2.7 1 z. 7>, --­
\cJm 

It can be deduced that 

Under the assumption that "t"' << 1 
'l: 

so that 

(ln) O'oTh --/1 + 'tY1 ~/p -w.,... 6 me c<m --- ::::: w-., E'O) o<. Eye'*iZib oe 0 

CJ'0JI +"Yn bib - 5 v E. 'If -.rz 

(26) 

~or 111=0, IJ 2, 3,---

(27} 

"tm-tm-1 
'2:: 

"[[T 
C V""m 

(28) 



Solving for V and using (27) we find 
m 
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(29) 

showing that the velocity increases without bound is the crack grows which 

is impossible because free running cracks are known to be limited by speeds 

of the order of half the shear wave speed. However such a result is not 

surprising since inertia has not been included in the formulation. Nevertheless 

(29) may provide a reasonable approximation to the crack tip speed if it is 

sufficiently less than the shear wave speed. 

Passin g to the continuous form by letting m ~ :: s, in which s is the 

distance the crack tip has traveled, we have 

. lT = ds ~ _!L_ 0'0 /Ey ~~(I+ Ji.) 1 

h . h h -:r:t' 2-{2 e~ "C h '=' 
W lC S OWS 

s 
b>>l 

(30-a} 

(30-b) 

(30-c) 

The initial behavior indicated in (30-b) results from the increasing amount 

of strain which accumulate s in the elements ahead of the crack as it 

propagates. This increase in velocity when S« b occurs while the stress 

at the crack tips remain essentially constant as seen from equation (4- b') 

However, the fact that the stress is prop.,rtional to fi for s >> 1 accounts 

for the more rapid increase in velocity shown by (30-c }. 

The time dependence of crack growth can be determined from (30-a) 

by integration: 

(31-a} 

so that 
(31-b) 

(31-c} 
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Remarks.-

The proposed phenomenological model is by no means unique, with 

it being possible to include a more complicated material representation 

instead of the incompressible VOigt model used here. Also it should be 

possible to introduce a more sophisticated fracture criterion if necessary, 

based not upon maximum strain, but perhaps octahedral strain as a function 

of strain rate and cumulative damage. Further, for ease in manipulation, 

the discrete element formulation might be replaced by a continuous material 

formulation. Finally a basic investigation mif!ht be conducted to ascertain the 

physical significance of the characteristic strand diameter, ~ , incorporated 

in the analysis. 
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APPENDIX 5. 3 - Large Plane Strain Analysis for Distortion Energy 
in a Hollow Tube 

The strain transformation in cylindrical coordinates is given 

by 

f (1) 

Here the superscript bar indicates the deformed or Eulerian coordinate. 

The Jacobian of the transformation is given by 

I dr I d7 
dr 

frdii 1 
-:::=- 0 

I dJ I 0 

Incompressibility demands that 

-'2. 
I 

>..'2. - 1 + 

dr: 
dr = 

Substitution into (2) yields 

-2 a -
,..2 

{ 
-
A. 

0 0 I dr I 
r 0 \ rd e I -i' 

(2) 

0 II d8 I 

(3) 

(4) 

" o.-
( 5) 

(6) 



The equilibrium equation is cast in Eulericn coordinates 

Cfe- ~' 

1'" 

· Substituting (6) and (7) yields after integration 

' R = 

-:::; c- Ln >.. 

At the inner surface, radiu's a 

- p 
p. 

I 
C - Ln ;\Gl. + 2 ~; 
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(7} 

(8) 

(9) 

(10) 

( 11) 

(12) 

At the propellant-case interface, the radial stress (r=b) is taken to be- P. 
1 

- P ~ - c. - Lr1 A b + -L 
~ 2\b~ A (13) 

A~ 1 + M(A~-~) 
( 14) 

where a gain 

( 15) 

(16) 
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The strain energy is easily seen to be a maximum at a , so that 

(17)--

The interfacial pressure is determined by matching with the case. We 

have using a prime to indicate properties in the metal 

<r, A 
B - r2 (18) 

_,M. A 
1- 2'1)' + i B 

-
I" 2_P.- I jZ .2/" I 

(19) 

At r=b, we have 

PL A 8 - bz (20) 
2 

A (I- 2:-i) .>\b-1 
(~ )b 

B 
+ 

~I b2. 2 2_)-t I 
(21) 

Note that we equate (u'/r)b to the finite (Murnaghan strain) to be consistent 

with large strain theory. even though we use small strain theory in the case. 

At the outer surface of the case, the pressure is assumed to be zero. so that 

(22) 

Solution is expedited by defining, as before 

¢ = # ( 1 
»' + 2 s 2~') (23) 

so that Ab -1 - ~~ ¢ (24) -
)A 



-67 

Substitution into ( 6) yields 

(25) 

and with (64) • there results 

Since h.o. will be approximately 4 near the yield. (6) is easily approximated 

by 

using m :: a/b 
(27) 

and the strain energy becomes 

vJ = (28) 

This expression is to be compared with ( 8) for "V =t 

2p [ ¢ + m ( ~ - ¢) ]2 
(29) 

for small <j>. Thus, in small strain theory, the energy increases quadratically 

with pressure, whereas t he dependence becomes linear in the large strain theory. 

i. e. • 

W. ,'"\J ,....., (30) 
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FIGURES 
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