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PREFACE

Previous reports of this series have attempted to
define some of the important parameters affecting structural
integrity of solid propellant rocket grains. Three general
areas have been discussed, namely material properties;

analytical procedures, and criteria for mechanical failure.

This particular report is devoted to failure criteria,
including both limiting deformation and fracture. First of all,
the characteristic material properties of filled and unfilled
elastomers are described, followed by a brief description of
current and proposed tests which can be conducted to obtain
experimental information relating to these characteristics
in such a form that they can be incorporated in structural
integrity analyses. In particular, the necessity for multi-
axial tests is stressed in conjunction with minor requirements

for new experimental equipment.

The selection of appropriate fracture criteria is discussed.
Most progress, however, can be reported only in criteria for
unfilled elastomers for small and large strains where it appears
a distortion strain energy density may be used. It is necessary
to delay any really definitive remarks upon filled elastomers
or actual grain composites, and subsequent use with cumulative

damage analyses, until additicnal experimental data for propellants

is forthcoming.
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V. FAILURE ANALYSIS
A. Common Types of Failure Criteria

It has been repeatedly emphasized in earlier reports (1=5) that a
complete analysis of the structural behavior of a solid propellant rocket
motor includes not only a stress or strain analysis, but also a failure
analysis. Previous reports have aimed primarily at investigating methods
of estimating the stresses or strains in a viscoelastic propellant material
due to prescribed applied loads. In this report, we propose to treat the
companion problem of predicting the maximum imposed loading at which

either excessive deformation or fracture threshhold is reached.

1. Deformation criteria

As implied in the foregoing there are usually two basic structural
engineering criteria, deformation and fracture. By way of example in solid
propellant applications, they are exemplified by slump and grain cracking,
respectively. Generally the first of these is tied in rather closely with
ballistic performance and storage procedures, that is to say a maximum
permissible deformation without fracture is more or less arbitrarily
prescribed. If this is the case, it becomes a simple matter to complete
the analysis by finding the loading or time corresponding to that state when
this deformation is reached by applying the viscoelastic analysis techniques
previously developed.

One illustration is the situation wherein a second stage rocket grain
may be fired vertically and subjected to inertia loading for short periods,
say, of the order of minutes. On the other hand, the grain, perhaps for
logistic reasons, may be stored vertically for extended periods and in this
condition also subjected to vertical gravity forces but over a considerably
longer time. Both of these situations require the prediction of time dependent
deformations—the first under n.g gravity loading for short time, the second
for one g loads over long time.

The elastic analysis for such a condition has been presented in the third
report of this series wherein it is shown that the inward radial constri ction of

a thick walled case-bonded cylindrical grain at the base depends upon the
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support conditions. If the base is completely unsupported, the throat
area does not choke at all but takes up the general deformation pattern
shown in the sketch. On the other hand, if the base is rigidly supported,

there will be a choking tendency as shown. Its magnitude, in the particular

SUPPORTED
GRAIN

UNSUPPORTE D
GQRAIN

case where the web fraction was fifty percent, was found to be of the order

% =~ 20 f—fé—
where p is the density (pci) of the propellant and n the number of times
gravity load. To examine the effect upon ballistic performance one could
compute the relative change in port area AAp/Ap to be twice the above figure.
The previous calculation is based upon an elastic analysis, when E is the
elastic modulus. An approximation to the time dependent deformation can

be obtained by replacing E by its viscoelastic equivalent, which for a three

element model gives

_ Me ¢
sfr . AOPON [y (i Me)e” Wy ]

where it may be casily checked that for long times E — " the rubbery
modulus, and for short times E—v'mg, the glassy modulus. The relative
amount of choking is seen to depend upon the mechanical properties,
including the characteristic relaxation time. If therefore the maximum
permissible blockage were specified as the design criterion, one could
compute the time at which it would be éxceeded for a given gravity load.
A reasonably large grain, for example, would have an upper bound of

approximately ten percent per g at room temperature.
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The analysis given is approximate, but is presented to make the
point that if a deformation criterion is imposed, it is merely necessary to
refine the appropriate deformation analysis to the accuracy desired for the
prediction. As the procedure is straight forward, although not necessarily
simple in a given problem because the strain analysis itself is complicated,
no additional remarks upon the deformation criterion will be included at this

time.

2. Fracture criteria

In contrast to deformation, the mechanics of fracture requires a
fundamentally different type of investigation. Fracture first occurs on the
microscopic scale, when the medium is non-continuous. Hence the analysis
techniques, based as they are upon the assumption of a macroscopic continuum,
are not valid at the point of fracture. For this reason the problem of fracture
analysis is markedly more complicated inasmuch as it requires a knowledge of
molecular behavior not smoothed out by the macroscopic averaging process.
Cn the other hand, it has proven possible to determine certain extremely useful
gross fracture characteristics, for example uniaxial tensile strength as a
function of strain rate and temperature. From the engineering standpoint, it
is desirable to extend, empirically if necessary, such limited information on
special test samples to more complex geometries such as a star grain.

The general requirement for such a correlation is by no means new,
although a precise statement for viscoelastic materials has not been particularly
emphasized. Nadai(é) enumerates for example several different fracture
criteria, primarily as used in the study of metals, and it is worth restating
them here. Each criterion defines some particular functional of the stress
field or strain field, the value of which is to be determined empirically. (As
yet molecular theories of strength are not advanced to the point of calculating
such numbers theoretically.) When the appropriate functional is exceeded,
yield, rupture, fracture or what have you takes place. Seven criteria are
listed below:

a) the maximum principal stress
b) the maximum principal strain
c) the maximum stress difference (or shear stress)

d) the maximum strain difference (or shear strain)



e) the maximum total strain energy
f) the maximum distortional strain energy

g) the maximum conserved distortional strain energy

Criteria (a) and (b) refer to the fact that, when three principal
stresses are acting along principal axes of the stress or strain ellipsoid,
one of them will be a maximum relative to the other two, barring the case
of hydrostatic stress. In simple and biaxial tensile fields, these functionals
are identical with the yield or ultimate stresses and strains for these fields
respectively.

Criteria (c) and (d) stem from the observation that many materials,
particularly those which evince ductile fracture (sometimes known as shear
fracture) do so along a pair of planes or a cone lying in the direction of
greatest shear. The maximum shear stress has the value %(Gl - 6V3) and is
obtained on a plane inclined 45° to the direction of the principal normal
stresses. It is interesting to observe that finite clastic theory predicts an
angle greater than 450, whereas, in fact, a value less than 45° is usually
observed. This criterion is not suitable for mathematical formulation since
it is necessary to determine first the maximum or minimum stresses (or
strains).

An alternate crierion based on a mean value of the stress differences

was proposed by von Mises(7). This takes the form

ﬁ(ro = V(G'.—‘T,_)z-r (G - U_S)L-e (Vs-q-,)L

and is termed herein the mean deviatoric stress. For both simple uniaxial
tension and biaxial tension (. is identical with the yield or fracture stress.
For pure shear on the other hand, the yield stress turns out to be ‘7'0/1/—3_:
The mean deviatoric stress (or strain) has not been listed as a
separate criterion because it is actually related to the distortional strain

energy criterion proposed by Huber and Hencky. (8) They observe that

- Y 0 =
2 (G-03) ¢ (-0 )+ (G- T

6/“ 12/.»-
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The mean deviatoric stress is also 3/V 2 times a quantity known as the
octahedral shear stress . The total strain energy listed under (e) was
proposed by Beltrami and Haigh (9). It does not prove satisfactory,
since there is no correlation between behavior in pure shear and in pure
hydrostatic compression. The conserved distortional strain energy refers
to the energy stored in a viscoelastic or plastic material, i.e., over and
above what has been dissipated. The theory of application of this criterion
is still not in a satisfactory state.

The important point to note is that no universal fracture criterion
has been established, and that the success of a given fracture hypothesis
depends in large measure upon the material with which it is associated.
Inasmuch as no exhaustive investigation of fracture criteria for clastomers
has been reported to the authors' knowledge, it would appear that one direct
engineering approach is to examine test data in conjunction with certain of
the aforementioned criteria, and inquire if any of them give reasonable
correlation.

The following paragraphs therefore will present a summary and
discussion of some current and proposed tests and their correlation, after

a restatement of some of the germane characteristics of elastomers.



B. Material Characteristics of Amorphous Elastomers

A composite solid propellant is a highly filled rubber. Ballistic
missile logistics demand that the filler be oxidatively energetic in order
to deliver at least 250 sec. of specific impulse in combustion with the
binder. The science of propellant chemistry has narrowed down the
inventory of such useful oxidizers to the combination ammonium perchlorate-
aluminum. In this combination the aluminum fuel serves to prevent over-
oxidation of the rubber fuel, and at the same time, by virtue of its high
exothermic heat of combustion, overcomes the disadvantage imparted to the
exhaust gas by its high molecular weights.

Rheological studies have shown that it is expedient to incorporate
the filler as a trimodally distributed agglomerate of particles, ranging fromone
to 250 microns in diameter with the mean size occurring at about 30 microns.
Single crystal studies have shown that the aluminum-rubber bond in tension
is approximately 90 psi, and that of the oxidizer rubber about 30 psi. Since
the tensile strength of a filled rubber lies in the range 20 to 200 psi at room
temperature, it is seen that the filler-binder interaction contributes an
important featurs to the mechanical behavior of such composites. Eecause
of its relatively high bulk and shear moduli, the filler may be assumed to be
absolutely rigid.

The binder, according to current standards, is a synthetic rubber,
negligibly crystalline, with a molecular weight between juncture points
anywhere from 10 to 100, 000. These juncture points may be branch-
points at which a tri- or tetra-functionalmonomer has been incorporated
into a condensation polymerization system; or they may be crosslinks
effected, not by vulcanization, but by mixed condensation-addition poly-
merization. The mechanical properties of the'binder, without its filler,
are not the same as those of the pure rubber. The polymerization process
is markedly affected by the presence of the filler.

Needless to say, the mechanical properties of such a composite
are a quite complicated function of the properties of the binder, of the volume
fraction, particle size distribution, and adhesion of the filler. In order to

understand the fracture mechanics of such a system, it is appropriate to
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study first thz fracture mechanics of unfilled rubbers, and then study
the modifications produced by various degrees of filler. In carrying out
this cormparison, it is extremely important to remember that the filler
not only modifies the mechanical properties, but also the molecular
structure of the binder, so that it is necessary to understand how the
mechanical properties of a rubber depend upon molecular structure.

Finally; before proceeding with this study, it is appropriate to
asky what are the important modifications introduced by the filler ?
Experimental studies on propellants have shown three differences from
unfilled rubbers. First, the tensile properties of filldd rubbers are very
different from their compression properties. Seccondly, yield occurs in a
series of steps; it may be necessary to distinguish among several types of
yield. For example, it may be important, from the ballistic viewpoint, to
define yield as the point at which the propellant has become porous enough,
by virtue of mechanical strain, to increase its burning rate beyond a safe
value. This critical porous strain may be less than the strain at which
mechanical failure will occur. Thirdly, reslaxation of stress progresses
long after the rubber component has relaxed to its rubbery modulus; this
indicates that a reshuffling of the adhesion bonds and positions of filler
particles is a continuing process.
The next sections discuss the elastic fracture of rubbers and unfilled

binders.

1. TUnfilled elastomers

As the title of this section indicates, the materials with which we
are dealing store energy reversibly until the time a crack appears. At
this point, the energy released can in principle be accounted for by the
kinetic energy and surface energy imparted to the new crack. The crack
acts as a point of stress concentration but the local stress far away from
the crack will remain below the yield stress of the material and thus
continue to store energy clastically until the crack propagates through the
material, at which time all the remaining strain energy will be recovered

as kinetic energy.
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Examples of such elastomers are natural rubber, butyl rubber,
styrene-butadiene rubber (SBR, formerly GRS), polyurethane rubber, etc.
All such rubbers evince large shear deformations prior to yield or cracking,
and must therefore be characterized by a theory which allows for large
deformations. Rivlin el has shown that the strain energy of a unit volume
of undeformed rubber may be appropriately expressed as a function of three

_ strain invariants, which, for an incompressible material, assume the form:

T, = N, + XNy + Ny (1-2)
= | \ \

Iz _;\"1. i ) -;\-i + _X:; (l-b);

T n Ao AL A =1 (1-c)

Where A, is the extension ratio of the coordinate acted on by the normal stress
G'i. Application of the principle of virtual work leads to the stress-strain

relation* in terms of the true stress 5’-1 e
= 2 a”w L k
G =0 h = 2L A2 a5, 1 ¢ (2)

where k is, in general, a function of the coordinates, but not of the strain
invariants.

In order to use (2), it is necessary to understand the nature of the
strain energy density function W, and in particular; to procure an analytical
representation which holds as close to rupture as possible. We shall take
as our type material, for this study, unfilled natural gum rubber vulcanizate,

11)

is characteristic of natural rubbers that they possess a sharp increase in

the simple stress-strain curve for which is reproduced ( in Figure l. 1t

stress beyord 500%0 elongation. Most synthetic rubbers break near this

elongation.

*When shear forces as well as normal forces are acting, the X s are
replaced by a set of appropriate strain tensors. In what f0110ws, (2)
will suffice.
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(1) obtained

An empirical method for rectifying simple tensile data
on incompressible elastomers is based on the following observations. The

initial portion of the stress-strain curve isf airly well represented by

A—1
{ pen X T
0 = = (.1 v —)T) = &= A (3)
which is equivalent to
F = = ( A= ) (4)

where ¥ is the true stress. Note that for large extension ratios (3)
approaches the limiting value (= E. In order to provide for the rapid
increase in stress with later portions of the curve at large strain, (3)

may be modified to

A-X)
)\—.l E(,\_\) ﬂ(. A
- B = BTl
a e A = nT S (5)
which reduces to (3) for g = £ at small \, i.e.,

|
= (M%) (6)
e — A
Cne can use (5) by plotting (Figure 2)
e TA — taE + B(A-3) (7)

where it is observed that the stress in kg/cm2 is given by

_ 0.416(/\—_“> .
)\)\x S g L A& 6 (S'a)

G = 7.39

0.80(A- %)
e 6<A (8-b)

We proceed to define \ = ¢ as the yield point and observe that the modulus
after yield is reduced by slightly more than a factor of 10, indicating that

the network resistance has been drastically lowered. Since modulus is
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proportional to cross links per unit volume, we infer that the loss in cross-
link concentration arises from the slippage or tearing of entanglements, and
that only the true chemical crosslinks remain to offer resistance. Support
for this inference is deduced from the observation that the exponential factor
now behaves more like xz than \, since B has doubled. This means that the
load rather than the true stress is proportional to strain, the proportionality
constant now behaving like a spring constant; lateral effects have suddenly
become unimportant; the network loops now offer little or no resistance.

The exponential factor exp B()\-X-l) is not amenable to quadrature
and so the area under the curve in Figure 1 was evaluated stepwise by
Simpson’s Rule and the resulting strain energy plotted in Figure 3. This
smooth monotonically increasing function of \ is nicely rectified by plotting
W vs (11-3) as network theory (13} demands, (Figure 4). Again we note the
yield at A = 6 . Prior to yield, the strain energy function is well represented
by

W= Z(I-3) = o0883(1.-3) (9)

so that the shear and Young's moduli are approximately 1, 76 kg/cm2 and
5.28 kg/cm, respectively; this is a somewhat lower value than that obtained
from Figure 2, but this is so because in (8) a higher E is needed to compensate
for B = 3; in other words, only the initial portion of the tensile curve can be
represented in the form (8) with g = £ and E = 5. 28.

The incompressibility of rubber all the way to rupture can be neatly
demonstrated in the following way. In the case of simple tension; the strain

transformation is given by

Moo= M= = (10)

I, =+ (11)
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The relations (10) and (11) hold only in the case of an incompressible
material. Now assume that the strain energy function is given in the

Mooney-Rivlin form
W= W(I, -3)+ W, (I, -3) (12)

where Wl, W2 are constants characteristic of the material; we have

chosen Wl = .883, Wy = C. The slope of the curve in Figure 4 is given

dw dT I :
0T MR s Wy v p W = W (13)

in our case; similarly

%=wz+xwaA%" (14)
Figure 5 shows a plot of W vs. (12-3)‘; it is easily verified that the slope
at any po:'mt,dW/dI2 ,i8 exactly equal to \ times the slope dW/dI1 of
Figure 4 right out to rupture. Thus the discontinuities observed in
Figures 2 and 3 are not to be associated with density changes.

We turn now from a description of the material characteristics of

unfilled elastomers to those of the filled material.

2. Filled elastomers

The most striking difference between filled and unfilled elastomers
is the so-called blanching phenomenon or pullaway of the binder from the
filler. As indicated in the introduction, this makes for three observations.
First, the pullaway occurs in steps, uhdoubtedly depending upon the
distribution of adhesion bond strengths between oxidizer and binder.
Second, it does not occur in compression. Third, after pullaway, relaxation
not of the network, but of the strain energy lacated at the surface of the void
gspaces, occurs. This is demonstrated by the fact that a filled rubber, after

three months at constant strain (300/0), will relax its modulus from 500 psi
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to 5 psi. And then, upon complete recovery of the applied strain at the
end of a second three months, will resume its initial modulus minus the
contribution that arose from the adhesion to the filler. If this cycle be
repeated a second time, the modulus will relax and return to roughly the
same values.

Because of this reversible shuffling back and forth of the filler
particles, it follows that the time rate of change of the local stress
distribution in a filled rubber must be quite complicated and that the
rupture criterion may be significantly more complex than that which is
proposed above for an unfilled rubber. One can start by neglecting
relaxation, ie., working with short time data. On this basis then, the
curvature of a tensile curve is to be ascribed entirely to pullaway effects
without reshuffling. The modulus decreases because adhesion bonds are
broken and because the propellant dilates. This dilation effect is shown in
Figure 6 where Poisson's ratio is plotted vs. axial strain, the strains having
been carefully measured photographically. Figure 7 shows how the modulus
is increased in the region of negative strain or compression. The question
arises: what sort of elastic behavior is evinced by such a material when it
is subjected to combined tension and compression?

A relatively simple case arises in the pressurization of an infinitely
long hollow unjonded tube of prepellant, internally pressurized, the analysis
of which will be pursued here. Since the algebra is quite involved, only the
essential features will be sketched. It is thought that this type of analysis
will become increasingly important as the nature of the pullaway effect
becomes more completely understood.

As a result of internal pressurization, all radial and axial elements
of the propellant tube are in compression. The hoop elementg however, are
in tension so that an orthotropic response may occur. Jaeger(l4) shows that
for such a case, where the orthotropic material properties are with respect

to cylindrical coordinates, the stress-strain relations are

il

G'e C33 Ee + Cls €, + C56€, TFB = C44 }/re (15)

Tr = Ciz€e * Cu & ¢ (C.“-zc“) €s Toz = Cyq for

~~

g = Cy€e (C“—QC‘“)G,. + G 6, | Cra = Cye Vs
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By analogy with isotropic theory, we have

Ce: = F

Cas = Aqr +2pm (16)

S = ATe

Ch = Acc +2p
Since the hoop direction is the only one in tension, C33 is the coefficient
that one would measure in triaxial tension, of the type described in
Section II, so that (C33-2/- ) is indicated by the Lamé constant with a
double subscript T, Likewise, (Cll-Z M) is the Lame constant one gets
from triaxial compression, and is designated by the double subscript C.
The coefficient C13 is an interaction coefficient which could be measured in

mixed triaxial compression tension, i.e.; pulling in one direction and

squeezing on the two sides. In pure compression, the constants become

Cyp -2 = Cp = Cu-2m =X = K- Fp (17)

where K is now the hydrostatic bulk modulus in compression,

In the problem
at hand, we have

A d 18-
e = Cszx F + Cl3 dt:. ( 2)
dw 18-b
Gr= Cis —l";_ + Cy ar ( )
w ) Jdw (18-c)
Ca = Cia - + (C’,,—Z/*)g;.

where u is the radial displacement. Substitution of (18) into the equation
of stress equilibrium

4 , G-Te

- 0 19
av r (19)
yields
dw 1 dw  Gss o w g (20)
dr" i3 r C|| T2
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Note that, by direct observation, << )‘cc (because of the pullaway effect)

and therefore C55/ C,, < 1. The solution of (20} is given by

L3 =
w = AT A T X el
A B 22
o = 15 (CarVoica) s o b i A e ) 2z}

3
where k = (C33/Cil)2, The constants A and B can now be evaluated at r = a,

and r = b, where 0y =B and C respectively. The result is

Th o e (é)“z_ (Tb)l—k (23)

P (;_,:)u 3 (E)\—k

%{9_ - & (%)Mf (% - o
(=~ 2

PP M 0 B (e . A R
e [ @ P2 )]

Note that if C,,/Cy; 2> k, the radial displacement is negative.
However this is not physically possible since the work done by the internal
pressure must always be positive; hence one should find experimentally
that C13/C11$ k., Further, when C13/C11 = k, there is no singularity
as can be seen by taking limits carefully. The most significant difference
from the isotropic case arises in the occurrence of fractional rather than

integral exponent powers of the radial coordinate.
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This same treatment can be applied to the case~bonded propellant.
It will be necessary in this and many other situations to solve for the point
at which the hoop stress changes sign. By following this procedure; one
can avoid trial and error techniques. In general, problems of this nature
will best be solved with the aid of digital computational aids. BRefore
programming, however, it will be necessary to determine the strain energy
function for the propellant in both compression and tension. The theory of

finite elastic deformation of anisotropic materials has been presented by

Rivlin and Erickson(ls) so that, in principle, the pullaway effect can be

handled all the way to rupture if the strain energy density function is known.



-16
C. Uniaxial Test Data

Considering the implied necessity for obtaining material property
data for fracture investigations, such as the strain energy density function
just mentioned, it is appropriate to review some of the current tests com-

monly being conducted, and their applicability to the problem at hand.

1. Standard variable strain rate testing

By far the largest accumulation of data relates to fracture under
simple uniaxial tension. For solid propellant materials these tests have
normally been conducted on standard JANAF specimens (Figure 8) at vari-
able strain rates and temperatures. One common testing machine is the
Instron tester which will impose constant crosshead motion through a range
of speeds from 0. 02 to 20 inches per minute, over a temperature range be-
tween -100°F and 160°F. The output of the machine is an automatically
recorded force-time trace to fracture (Figure 9) which provides the basic
experimental information. Depending upon the magnitude of strain to frac-
ture, the data is converted into plots of nominal or true stress, i.e. force
divided by original or actual cross sectional area, versus strain. The ac-
curacy of the latter quantity is frequently open to question because the elonga-
tion, or crosshead separation, is not distributed evenly over the specimen
length and some '"'effective length'' must be selected. It is common practice
to use an effective length of 2 7 inches for the JANAF specimen.

This uncertainty in the basic data emphasizes the desirability, and
near necessity, of developing local strain indicating devices for low modulus
materials. Several improvements along these lines have been attempted,
such as using gage marks near the center of longer specimens, or circle
patterns distributed over the length. While some increase in accuracy has
been reported, the data serve also to indicate in many cases a basic non-
homogeneity in strain distribution due to the filler particles in the propellant.

Neglecting nevertheless these important experimental refinements
and working only with the reduced experimental stress-strain data, one turns
next to the problem of organizing the extensive test information for many
temperatures and strain rates in useful form. Presuming for the most part
that maximum stress, (Tm , and strain at maximum stress, Em » are the
significant quantities (the slope of the curve, or modulus, is also used in

model representation) Smith has shown for a wide variety of polymers that a
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very reasonable correlation of ultimate tensile properties can be obtained
if the data are plotted against the logarithm of a reduced time parameter,
a.TR , where R is the constant strain rate at which the test was conducted

and a-T is the Williams, Landel, Ferry (WLF) temperature shift factor,

lega+ = I.Og—z—R = —é—(ﬁ- (26)

aT can also be interpreted as the ratio of the time to measure some phe-
nomena at temperature T to the time to measure the same phenomena at the
reference temperature Tg .

A set of typical strain data is shown in Figure 10, and similar stress
data in Figure 11. Note in the latter case the stress has been normalized by
a temperature ratio because polymer theory predicts a linear increase of
retractive forces: with absolute temperature. Both sets of data were nor-
malized by using the temperature shift factor, experimentally deduced from
separately shifting (i) strain at ultimate stress data, (ii) maximum stress
data, and (iii) modulus data, and finding all three agreed if €, = -8. 86,
£y * 101.6 and Tg = 269°K. That such a convenient and near universal
correlation exists for ultimate properties is extremely useful, and among
other things, permits one o predict with fair precision the uniaxial tensile
fracture behavior over wide ranges of strain rate and temperature from a
limited set of test data.

Before passing on to a consideration of fracture under multi-axial
load conditions, it should be observed that the temperature shift correlation
is reasonably well founded experimentally but that the limited strain rate
capability of the Instron tester is not particularly well suited for verifying the
correlation over wide extremes. This may be noted in Figure 10 where the
test data at various temperatures barely overlap. One would feel much more
confident if, for example, the open circle (160°F) data obtained over the
l/REET range 5 to 8 could be extended to lower values by increasing the strain
rate, hence lower 1/R aT , at the same 160°F temperature. Bearing in
mind however the limitation of the tester, approximately 20 inches per minute
crosshead motion maximum, it is impossible to fulfill this desire without

changing the specimen, which would not be particularly acceptable.
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2. High strain rate testing

The obvious answer is to inquire if higher rate testers would be
available. Several have been developed. One of these is the Allegheny In-

(17)

strument Company device which is generally well known. Another is one

developed by E. 1. Du Pont de Nemours and described in a recent paper by

Jones(lg).

Basically this latter machine, which achieves high loading rates
by means of a controlled explosion of smokeless powder in the head, can
strain JANAF specimens up to approximately 200, 000 inches per minute.
While it is premature to generalize, indications from this and other high
speed tester work are that the theoretical W LLF shift factor for ultimate

fracture of tensile JANAF specimens is valid for engineering purposes.
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D. Multiaxial Testing

Inasmuch as the uniaxial testing procedures for simple JANAF
tension specimens are well known and data reduction techniques widely
disseminated, the subject has been rather shortly dismissed. Cn the
other hand, from a structural standpoint as distinguished from the
quality control objective, the important subject of the fracture behavior
of viscoelastic materials subjected to biaxial and triaxial loadings needs
considerable amplification, but suffers from lack of experimental data.
At the present time, it is proposed to discuss some possible experiments
in this area with particular emphasis upon their suitability for solid

propellant materials and due regard for testing equipment convenience.

1. Pressurized tensile tests

Perhaps one of the simplest extensions of the present uniaxial
tensile test using the Instron tester is to enclose the specimen in a leak
proof container filled with air or liquid maintained at an arbitrary compressive

J_ oy .pressure. Within the same criticisms of

the basic test with no external pressure,
a triaxial tension-compression stress
S _,_%6,3 field can b.e imposed. Suppose that the
geometry is as shown on the sketch.

Then the stress and strain analysis for

the central portion of the specimen

T subjected to the uniaxial tensile stress

gives

Ty = T ; £ = %[4-2%]

(27)

g
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One would expect therefore an apparent uniaxial modulus for this triaxial
field of

—

P R T S (29)

where; because in the tests as described k is negative corresponding to
a compressive stress, the apparent modulus would be smaller than the
uniaxial modulus. For small strains it would in principle be possible to
deduce the (elastic) value of Poisson's ratio.

As in the former case, these tests could be conducted at various

strain rates and temperatures,

2. Poker chip tests

Another test that may be conducted with relative ease consists of
cementing a thin circular disk of propellant between two parallel end faces
of two circular steel plates being subjected to tension. The softer disk
sandwiched between the harder bars will be restrained,because of its
thinness from its usual contraction perpendicular to the load and hence
generate a triaxial tension stress field.

The elementary analysis for this case may be made by assuming
the disk infinitely thin such that the external radius is sufficiently far from
the center to assume the only non-zero displacement, w, is in the axial

direction. Under these conditions;, one is led to deduce for small deformations

T (1-29)(1 +VY)

Cs= @, ¢&5= E(/-Y) .
0, = G = /_‘)\) T; E=& =0 (30-b)
s0 that the apparent axial modulus becomes
i /-y (31)

E"- =£ _‘(/-2)7)(/+V)
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where it may be noted that for propellants, which are characteristically
nearly incompressible, i.e., ) = 3, the triaxial tension approaches
hydrostatic with a consequent infinite apparent axial stiffness.

A fairly extensive and revealing investigation into the use of this
test for an incompressible rubber has been reported in two papers by
Gent and Lindley (19-20). When one attempts to improve the analysis
outlined above, the major difficulty arises in determining the stresses
and strains throughout the disk. Whereas the previous analysis assumes
the edges are infinitely far from the center, in the actual test piece there will
will be a local necking of the propellant, however slight, as the assembly is
subjected to tension, When this effect is accounted for the analysis becomes
considerably more complicated. For an incompressible material, Gent and
Lindley have given an approximation to the apparent axial modulus which

depends on the thickness; _}_1_ , of the disk of radius a ,
Ea=E[1+2(B ?
a = TE2(h/ (32)

where it may be observed that the apparent modulus, as before, becomes
infinite as the thickness approaches zero.

Furthermore their fracture data, reproduced in Figure 12, shows
for the various compositions indicated by the different curves that the axial
stress to cause fracture increases as the disk thickness decreases., They
have suggested that the limit for zero thickness is twice the value for large
thickness. While it is tempting to thus extrapolate the data, it is not
unreasonable to expect the curve near zero h/a to change slope. Realizing
that the breaking stress used by Gent and Lindley is in reality an averaged
stress over the face of disk, it would be appropriate to obtain an improved
approximation. This can actually be obtained using the principle of
minimum complementary energy. The outline of such a solution given in
Appendix 5.1, and not restricted to incompressible materials; predicts a
stress distribution that is a power law in the radius and hyperbolic : in the
thickness, and for the limiting situation of zero thickness (infinite radius)
gives the proper limiting value dr/ 0’2 = ¥ /(1- 4 ). Further remarks
upon the utility of this solution in interpreting the experimental failure

data will be reserved until later.
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By conducting such tests as reported above, using an Instron tester,
the usual ranges of interest in strain rate and temperature can be covered

and the possibility of strain rate, temperature shift explored.

3. Torsion of rod specimens

Among the various types of mechanical testing, torsion stands as
particularly important. There are several reasons for this. First of all,
a cylindrical specimen subjected to a small angle of twist undergoes pure
shear; the applied torque is directly proportional to the measured twist
angle per unit length, the proportionality constant being the shear modulus.
Thus the torsion properties for small strain should be independent of
Poisson's ratio.

As the shear strain is increased, however, new effects enter the
picture. Finite elastic theory predicts a lengthening of the specimen
known as the Poynting effect.

It may be deduced that

% 2
/\3= 'f+4£(b2—a) (33)

where \ is the axial extension ratio
a,b are the inner;, outer radius of the cylinder respectively

k is the angle of twist per unit length

Cne obtains (33) by application of finite clastic theory to the strain trans-
formation defined by

/_;;‘;_
6 = 9+\Q§
1= Ag

The undetermined constant which enters into the theory because of the

=21l
Il

incompressibility condition is determined by setting the integral of the

axial stress over the end face equal to zero. Figure 13 shows a plot of

k3-l vs kz, taken from recent data(""l)“on polyurethane propellant. Note
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the excellent straight line correlation in agreement with theory. The
theoretical value of the slope is 1/8 inZ/ radz, whereas the measured
value turns out to be 1/7 in®/ rad®. Considering the assumptions made
in deriving (33), the agreement is excellent. The most important
observation that can be deduced from this is that the elastic properties
of the binder predominate at least up to 3%0 shear strain. A similar
type of verification is provided by the recent data of Bergen, Messersmith
and Rivlin on filled rubbers( a2 ).

On the other hand, indications are the elongation will decrease as the
twist is increased further. This is to be expected since the pullaway of the
binder from the filler will tend to convert the local shear into local simple
tension around the filler particles. What effect this will have upon fracture
in torsion is not known. It is suspected that the fracture criterion will not
be as simple for a filled clastomer as an unfilled one, therefore torsion
should provide an excellent way to check out the applicability of the distortion
strain energy criterion., Furthermore, torsion under superimposed hydro-

static pressure can then be used to check out the importance of anisotropy.

4. Hollow tube tests

Providing a satisfactory strain measurement is available, the
behavior of an internally pressurized thin or thick walled cylinder up to
and including burst would yield fracture information under biaxial tension,
for zero axial stress, or with the added triaxiality depending upon the nature
of a finite longitudinal stress. This type of specimen has been used with
mixed success at the U.8. Naval Ordnance Test Station(23) employing an
oil for the pressurization. The major difficulties aside from such obvious
ones as preventing leakage, are to obtain an accurate strain history and to
measure the applied time varying pressure. These tests can be used upon
either thin or thick walled cylinders, and with or without being enclosed in
a case. In some cases it will be more convenient to check out a thin case-
bonded design using externally mounted wire strain gages and inferring the
tube, or even star point, strains by working backward using the theoretical

solution. For most purposes however, the resultant case to grain stiffness

is so high that accuracy is poor.
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The main advantage of such a test is its reasonably close similarity
to an actual operational configuration. If the pressure-time rise is
appropriately regulated, the test could be useful in predicting fracture
under a varying and typical strain rate history.

It should also be mentioned that it is possible to extend the rod
torsion tests mentioned in the preceding section to hollow cylinders,
preferably thin walled because of the relative accuracy with which the
theoretical solution is known. Shank (24) has recently undertaken some
exploratory work in this area although it is expected some time will elapse
before definitive results are obtained. Another test variation using the
hollow tube is the possibility of using this geometry to examine the effect
of orthotropy of multi-layered cylinders. Some preliminary analysis along
these lines was prescented by Pister in the third progress report. Some
unpublished results of his continuing program, including some planned
experiments, should furnish evidence for or against the desirability of this

test geometry for orthotropic propellant media studies.

5. Crack propagation tests

Multiaxial testing can also be extended to include the biaxial stress
field which exists near the point of a crack in a medium which has already
begun to fracture. We consider several ‘initially cracked configurations
and their associated stress fields.

a, Thin sheets subjected to stretching:- A common configuration

for metal sheet specimens not used extensively for propellants is the tensile
q strip containing a crack perpendicular
1 f ? f to the load. This test is used to
determine critical crack length, i.e.,
to find what size crack or flaw a given
"r:b_i“ material of specified thickness will
sustain under a specified external
stress before it becomes unstable and

propagates catastrophically.

REE
5
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A considerable amount of test data and test technique has been accumulated,
particularly in the aeronautical field. The test results are usually presented
as in Figure 14, The main distinction between metals and propellants, of
course,is the sensitive strain rate dependency of the latter. One suspects
that a stressed specimen with a critical crack will not 'let go'" but rather
begin to fracture, at higher than impact rates; in more of a tearing fashion,

A series of exploratory tests was conducted by McCullough (23)
upon specimens one-quarterinch thick and two inches wide containing an initial
crack two-tenths of an inch long. For experimental convenience, these
were conducted at essentially constant strain and held until the crack began
to grow and the stress simultaneously relaxed. Typical data is shown in
Figure 15,

A somewhat general elastic analysis for this geometry has been
presented by Ang and Williams(u)) for an orthotropic sheet subjected to
combined stretching and bending, assumed infinitely wide with respect to
the initial crack length 2b. This elastic solution as might be expected
suffers from the fact that it predicts infinite stresses at the crack tip which
are of course physically inadmissible. On the other hand one can hypothesize the
the existence of a region of constant finite stress with a characteristic radial
extent which would give a stress distribution such as shown in the sketch.

- For problems where the boundary
A t ELASTIC conditions are prescribed solely upon
\ BOLLTION the stress, it will be recalled that the

viscoelastic analogy permits one to

STRESS

conclude that the viscoelastic stress
distribution is identical with the elastic

one. This experimental specimen

DISTANCE FrROM geometry is a case in point if the
CRACK POINT i o PR
plastic' region is neglected because all
boundaries; including the crack, are stress free except at the loading jaws
where it may be assumed the (uniform) stresses are prescribed. Hence one
may, for example, use the Ang-Williams elastic solution, reduced to the case
of stretching in an assumed isotropic sheet to give the viscoelastic stresses,

along the line of crack propagation for example, as
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0 (%, 0) = SE : x>b
x P [+ a2 ] A o
= o.§4EE -1 +oz[(-%) vt 5 x=bue

b
Sy = G § I + G a1 § 3 <P o

=0, { | fze7p +OLE)El+-} 5 x=bre |
It may be noted that at the crack point the solution predicts a two-dimensional
hydrostatic tension described in detail elsewhere(27).

The viscoelastic strains and deformations are obtained in the usual
fashion, It is necessary only to insert the Laplace transform of the pressure-
time loading into the solution for stresses above, integrate for the displace-
ments, and complete the inverse transform for the physical displacements.

From the fracture standpoint, however, the analysis is only partially
completed. As stressed in the introduction, the strain analysis due to a
given loading must be supplemented by predicting the load for which fracture
will occur, or in this case, for which the crack will begin to grow. An
analysis has been presented in Appendix 5, 2 giving the velocity of crack
propagation as a function of the allowable one-dimensional strain & * and
the radius of the enclave, § , over which it is presumed constant. The
simple analysis for a constant applied stress;, 6o’ has been carried out
using a ftwoc element viscoelastic model and leads to the result that the

velocity of the crack point, v,» ata distance nd from the original position is

A~ T Go/Ey bbb MmN 36
VN HE e 2 Vet ) ik B

In principle, therefore, it would be possible to carry out the
calculations for the constant strain loading used by McCullough and deduce
the appropriate value of § , if it exists. On the other hand, and considering
the exploratory nature of hi‘s early tests, a newset is being conducted based
upon a constant applied stress for which the foregoing analysis is directly
applicable. It should be emphasized however that § , estimated in Appendix
5.2 to be of the order of one thousandth of an inch, is still an experimental
parameter to be determined, although physically it may be thought of as the

effective diameter of a strand or bundle of polymer chains which act together.
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b. Thin sheets subjected to bending:- Another configuration of

considerable interest is an initially cracked specimen subjected to bending.
One common form is the peel or tear test, but, instead of testing adhesive
strength to another material such as a propellant case, suppose a cantilever
P sheet specimen was bent as indicated
in the sketch. It can be shown that
there is a biaxial stress at the base of

the tear and one could attempt to

analyze the resulting stresses and

P strains. Alternately one could consider,
for example a long cylindrical tube with
a wedge cut out where the wedge approaches
zero so that one would have a plane
fracture surface (see sketch). This
situation would correspond somewhat
to a crack along a star valley where the
wedge angle was adjusted appropriately.

Finally one could subject the same

e {’. {' cracked geometry as used in the tensile
D N loading situation to bending. Generally
N speaking, however, grains are not
§ ™ customarily loaded as indicated in the
< - T first and third sketches, and thus these
. p bending configurations are not of such
( P) immediate use except insofar as they
(.;. C{, assist in interpreting the mechanics of

fracture. Explicit solutions for the

fir st situation are not presently available
but the Ang-Williams solution can be applied to the strip containing a crack.
The '"log-splitting problem' however has been considered theoretically(zs' el
and gives some estimates of the biaxial distribution. At the present time,
however, they do not appear quite as ready for interpreting possible tests as

other suggestions previously made.
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¢. Pressurized membrane:- One final test to be described concerns

a circular sheet of propellant mounted over the top of a gas or liquid
pressure source - much like a drum head subjected to internal pressure.
The stress distribution at the center is uniform tensile - tensile and
determinable if the bending is considered a small effect. Further the
volume change can be measured, or strain indicators mounted on the
specimen to give stress-strain behavior under equal tension. It is

also possible to insert central or radial cracks in the specimen along
with suitable sealing, and prepare curves of critical crack length as a
function of applied pressure. It is suggested, however, that it may be

of more immediate value to explore the results of some of the tests more
readily adapted to current equipment, and exploit the resulting data first,
before considering the types of tests outlined in (b) and (9_) .
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E. Selection of the Failure Criterion
It is practically impossible to select a failure criterion without fairly
complete experimental data, although some interesting comparisons can be
drawn among the available criteria. In order to illustrate the type of corre-
lation being sought and how it might be treated, we shall discuss three cri-

teria thought to be among the more likely candidates.

1. Illustrative fracture criteria
The criteria considered are maximum distortion energy based upon
stress, maximum distortion energy based upon strain, and maximum normal

strain.

a. OStress distarﬁon: - In this case one assumes that the sum of the

squares of principal stress differences,which is proportional to the stress

producing a distortion as opposed to dilatation, is constant. Furthermore,

the constant Guni is determined from the uniaxial stress at fracture* so that
—
Tun, = (J//E)V((T.'GL):*‘ (('_2"(’—5)1*(('_3'5'.) (37)
Note that for the uniaxial tensile specimen, (Tl = 6‘2 = 0, and (,3 = Funi

as expected.

Consider now the same specimen, but in addition let it be subjected

to 2 lateral pressure stress (D,l above) such that G‘l = G‘z = k 0‘3, (These

latter stresses are equal from consideration of the equations of equilibrium. )

The allowable stress is then found upon substitution into the criterion to be:
0 o oA 1

S A 38
t G—uni l'\-‘ks ( )

|
Vs

Actually the stress at yield, in usual applications, where the onset of
yielding is defined as failure.
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03/ Tani
I which variation is shown in the
z | | sketch. It shows that a lower than
| - purely one dimensional allowable
O I stress would be expected if the side
4 : stress was compressive, whereas a
"_’/ [ higher value is anticipated for tension.
! . l Note that no limit stress is predicted
-3 -2 -4 ) 4 «<

if the stress distribution approaches
hydrostatic tension.
Test results for a pressurized specimen would thus be plotted on the
predicted curve, with correlation tending to substantiate the stress dis-

tortion criteria.

b. Stirain distortion: - If now,on the other hand, one were to pos-

tulate that distortion shearing strain was to trigger failure, then the cri-

terion in terms of principal strain would be

o 1 2 B z R
€Cuni = u“—*v)\/?\/(e“eﬂ v (6,- €3) « (eq-€) (39)

Upon taking account of symmetry in the stress-strain relations such that

€ = 62 ; one has for the same

€
1 ? loading condition on & pressurized
[ specimen as in a, above
€, «— — £, €= €, = %[_uut—v)k] (40)
3 | E
€, = =3 _ovk (41)
& € ® =] Ly-awk]

Thas, substitution into the criterion yields for the allowable strain compared

to that in the purely uniaxial stress condition
& 1~ 2v & ) ¢ Cun: { (42)
Euni 1 - 4 3 i = ? % = 2-1)&-{

which is easily checked by taking k = 0. For the more general triaxial

stress condition, however, the criterion becomes dependent upon not only
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the amount of triaxiality k , but also Poisson's ratio, vV . This variation
6}/6“"

is shown in the sketch. Perhaps

the most interesting observation

which can be made is that for Poisson's
ratio of one half, typical of incom-
pressible materials, the predicted

maximum allowable strain due to

triaxial stress is identical to the

-3 -2 -4 & A maximum (uniaxial) strain. Hence,
if substantiated by test data, one
would expect that whenever the strain at a point in an incompressible media
exceeds the one dimensional value - which is actually the maximum principal
strain criterion - failure would be predicted. Note also that while precisely
true for vV = 1/2, for ~— 1/2 the coincidence ie quite close over a
large range of stress ratios.
Note finally that no limiting strain is predicted if the strain distri-

bution becomes hydrostatic tension.

c. Maximum normal strain: - A criterion based upon this premise

is one of the simplest to use because it requires only a knowledge of how
much (principal) strain can be imposed, as determined by a uniaxial stress
test. Furthermore, in the particular case of a combined field, it corre-
sponds for an incompressible body to the distortion strain limit. As in any
of the criteria, however, test data is required in order to establish the

validity of any particular postulate.

2. Various combined stress fields

The selection of a criterion is difficult because, if urniversally appli-
cable, it must work for any combination of stresses. In the general situa-
tion, there are three principal stresses, each of which may be either tensile
or compressive. A convenient way of representing the combined stress is
to plot the stresses at a point in terms of rectilinear coordinates (c‘l . C'z . 6‘3).
Thus any state of stress will fall in one of the eight octants. Normally,
however, any single experiment will only check out one or two of the octants,
and thus several tests or types of tests must be carried out to test the hy-

pothesis in tension-tension-tension , tension-compression-compression; etc.



-32

With propellant materials, and especially filled propellants, there is an ad-
ditional complication because of the potentially different behavior of the ma-
terial itself in tension and compression associated with pull-away of the filler
from the elastomer.

Notwithstanding the difficulty in the experiment or analysis, it is
considered expedient to establish as many fracture limits as possible in the
various octants to permit the establishment of a temporary working hypothe-

sis, crude as it may be. We consider first the case of unfilled elastomers.

3. Unfilled elastomers

a. Possible criteria for fracture: - Most materials evince three

distinct regions of mechanical interest. There is an initial region of elastic
behavior in which energy is stored up reversibly. In the case of a metal,
this behavior extends only over a few tenths of a per cent of strain, which
strain is recovered completely without hysteresis, and the associated stress
is linearly related. In the case of a cured rubber, the elastic behavior ex-
tends out to several hundred per cent strain, which is recovered completely
without hysteresis;the associated stress, however, is related in a non-linear
fashion as indicated by eqn. (28). In the case of a plastic, the elastic range
may barely exist. When it does, as in the case of polymethyl methaerylate,
it extends only over a few per cent, and may or may not be linear over the
whole range.

The hysteresis phe?o_n)w_enon arises from internal frictional processes
31

and gives rise to the study of viscoelasticity . Most viscoelastic materi-

als are linear in their flow properties and obey the principle of temperature-

(18)

superimposing data obtained at various temperatures. The distribution

time equivalence as discussed earlier This makes for convenience in
function which characterizes the friction processes embraces a large range
of materials from unfilled rubbers to plastics (see the fifth progress report),
s0 that it is common parlance to talk of reduced equations of state for poly-

meric materials in general.

L

The term viscoelastic, as used here, is distinguished from plasticity by
being restricted only to materials which recover completely, or almost
completely.
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When a filleris introduced into an elastic material, new types of
friction processes are introduced. Thus, cured rubber which is esgentially
non-viscoelastic at room temperature becomes highly so when filled. The
rate and frequency dependence of the associated  relaxation in a highly filled
rubber does not appear to be linear, nor does it appear to obey the tempera-
ture~-time equivalence principle.' For this reason, special techniques are
needed for analyzing data on filled rubbers in the elastic region. A further
discussion of this will be presented at a later time.

As the strain is increased, most materials at some point begin to
show marked deviation from elastic behavior. If the substance is a metal,
it may suddenly undergo plastic flow in which case the yield point is clearly
marked. A rubber or propellant on the other hand will start to tear with no

marked yield point. A plastic will in some cases undergo plastic flow and in
other cases fracture in a brittle fashion, depending upon the rate - of strain.

After yield, local stress conditions predominate in most materials.
Depending upon the state of purity or the method of sample preparation, a
given specimen will contain a number of defective or weak sites which will
act as loci of stress concentration. For polymeric materials, it is generally
trye that the more brittle the material, the less sensitive to defects is the ul-
timate or fracture stress, as in the case of a plastic or rubber below its
transition temperature. In the case of a highly filled rubber tested at room
temperature, large batch-to-batch variations in tensile strength are ob-
served despite careful efforts to control the formulation. Thus, in dealing
with such materials, it is better not to use the fracture point but rather the
yield point for design purposes, which of course has the further advantage of
being conservative.

As enumerated earlier, various criteria have been éroposed to define
the point at which yield or fracture will occur. In addition, it should be noted
that for large strains it is necessary to distinguish between the mean devia-
toric stress(37) and the distortion strain energy(9). In particular, the maxi-
mum strain difference is defined as the difference of the finite strain
(172} 12 - sz) . The mean deviatoric stress is obtained by substituting (2)and (9)

into the expression

& = (42) Y@ - G- (F-T) (43)

= mW1z-3I1,
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Note that this expression, after squaring, does not yield the distortion strain
energy proportional to 11-3 as is accomplished in infinitesimal theory. Thus
a new criterion develops for elastomers. Lastly, the total strain energy is
identical to the distortion strain energy for an incompressible material. No
further allusion will be made to total strain energy until dealing with filled
elastomers. It is instructive to tabulate these criteria for an incompressible
material subjected to both uniaxial and biaxial tension. Since we are dealing
with elastomeric materials, finite elastic deformations must be accounted
for. In Table I, the ultimate value of the uniaxial extension ratio, N , is
chosen as the independent parameter and all other yield criteria are tabulated
in terms of it; one must of course be careful to compare yield values with
yield values and fracture values with fracture values. Numerical values for
these quantities characteristic of cured natural rubber are presented later

in the discussion.

Some comments regarding Table I are in order. First of all, note
that for the uniaxial stress field all the yield criteria with the exception of
the maximum principal strain and distortion strain energy are proportional
to the same factor ( /\z - ?\'1). A similar situation holds for the equal bi-
axial tension case, except that the factor is ()\z - >\'4). In both stress
fields the ultimate stresses are simply equal to the ultimate strain times
twice the shear modulus. Second, if the strains are large, all of the cri-
teria are proportional to A\ o . One might suspect therefore that the prob-
lem of defining an ultimate criteria for an incompressible elastomer is
straightforward: measure A at yield (or fracture) in any kind of stress field,
and as long as N > 3 the error made in failing to distinguish among them
is of the order of 5 - 10°/o. If, however, the fracture strain is small, of
the order of 20 to 30 percent as it may be in actual rocket motors, the cri-
teria will depend upon the stress state. The similarity of the strain pro-
portionality factor for many of the criteria implies, however, that it may be
sufficient when designing experiments to contemplate testing the hypothesis
in only three of the original seven of Table I, namely (i) mean deviatoric
stress (stress distortion), (ii) distortion strain energy (strain distortion),
and (iii) maximum principal (normal) strain, as suggested earlier in this
section.
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TABLE 1
Uniaxial Equal General
Yield Criterion Stress Field | Stress Field | Stress Field
1 |maximum principal strain A-1 A -1 = 4
2 | maximum strain difference ~‘Z(/\z- —;\') 'E()\I— )‘\-.4) -'2- (/\lL - )\:)
3 i 3 2 z |
3 | mean deviatoric strain _lz'()‘ 3 —;—\) T‘z (/\ - 7\—“) % 12 -371,
4 | maximum principal stress w (A - %) (AT = 3W) PO £
z
5 | maximum stress difference| ()\ S i) (A= ';3() P (AF - A )
6 | mean deviatoric stress S (A® ";T) M (’\z - }\_*) Jx LT3T,
7 | distortion strain energy /‘_"-(}\zr;f -3) ”‘2:(2/\1*}‘3 "3) %(I‘ =34
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As an illustration of how one might predict the ultimate values of
the yield stresses and strains in equal biaxial tension and pure shear from
uniaxial ultimate data represented by )\*g consider the following calcula-
tion based upon a maximum distortion strain energy criterion.

From equations (la), (2) and (9), we have

2
Tiuni = gl 72\'-* (l1a)
Tum = e (N2 ) (2)
\chw= %(Iu”s) (9

]
where N\ is known from experiment. Now for an equal biaxial stress field,
using a subscript b, the first invariant is

- > 1
L| b = 2 )\b i —A-AQ (44)
b
whereupon equating the strain energies using (9) and the respective values
of I1 » find
2 1 NG
AN+ fs = .« 5

One root is obviously

i
>\ (%) -
\ A% '
which corresponds to biaxial compression and is extraneous. The other

1

oA

% %
For large \ , we have: )\b —~ N /Y 27, which is a useful rule of thumb
for predicting biaxial failure (large strain) in a rubber when the ultimate

root is

A, =

uniaxial strain is known. Similarly, the associated stress ratio can be cal-

culated as ﬁ-b/-@‘uni = 3. On the other hand, for small strains such

that the maximum value of the strain energy is small enough so that X\
2

may be approximated by 1 + £ , then it follows that éb = € [2, and

U'b

= _o"‘uni at fracture.
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For the second case, pure shear generated in a material by applying
the extension field

)\)C = )\5 ) /\Y = 1 ) /\?_ = /\5
leads to
2 5 e U\:-l)’- M . GREE s
\(\/-‘/—2()\5_2*')\5 ) = 'E_—)\:_'= _2_’(>\ "')\* 3)
For large A
* 1
Ag = A — — (45)
% pA¥
1
. o N - 3 (46)
vhn-‘ }\* -_— Ki_;z
whereas if the strains are small
éus' = V_zi-l (47)
S o= 4 (48)
U;m' 3

Returning to specific consideration of a particular unfilled elastomer,
consider the fracture characteristics of gum rubber. The properties of
the simple tensile curve at yield and at rupture are summarized in Table 1I,
along with some predicted and measured values obtained for other stress
distributions. In connection with these properties, a few comments can be
made.

The extension ratio at yield is taken to be © on the basis of the dis-
continuity in the curve of Figure 3. The associated (, W and (Td are
tabulated. For large strains, it is necessary to adapt a definition of the
mean deviatoric strain based on finite elastic theory. It is convenient to
work with Murnaghan's definition of strain:

z
Flhi-t) = & (49)
so that

L(Il"z’) =- °

2 (50)
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TABLE II
Fracture Properties of an Unfilled Gum Rubber Vulcanizate

= 1,76 kg/cm®, E = 5.28 kg/cm?>, 1 kg/cm® = 14. 22 psi)
= g g

Table I Homogeneous Heter enéo_us
Property| Ref. Lme Failure Mode|Simple Tension|Biaxial Tension Trxaxx ension
A 1 yield 6. 00 4,30 |*6. 82 6. 00
- G 4 12.0 7.58 | 12.0 4,85
W‘:1 7 29.9 29.9 69.2 29.9
0q 6 12.0 7.58 {12.0 4, 85
& 3 ! 17.9 17.9 44,9 17.9
1N 1 fracture 7.65 - - -
G- 4 32.0 - 32.0 5.81
Wd 7 62. 4 62. 4 - -
U4 6 32.0 - [32.0 -
ey 3 ' 29.2 - . h

* energy criterion
} deviatoric stress criterion
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Now define the strain deviators and mean deviatoric strain by:

9 (51)

LViza-3m) (52)

after some algebraic manipulation. This is the last yield parameter tabu-

Il

= YB/a(euz*- e; +ey)

lated.

Of the five chosen, most likely candidates for the yield criterion are
as mentioned earlier, W, (Td and A . To date, the data necessary ta place
these quantites on a firm experimental basis have not been procured, In the
meanwhile, some predictions will be made for biaxial and triaxial tension.
Comparison is established with the only available multiaxial data ‘20).

In the first column, under the heading of biaxial tension, it is as-
sumed that rupture occurs always at a given value of the strain energy, ap-
proximately 30 psi. Notice that it takes less biaxial stress, and of course,
less biaxial strain to effect yield and presumably rupture under this assump-
tion. If, on the other hand, the mean deviatoric stress is chosen for the
yvield criterion (second column), then the sample in biaxial tension fails at
the same stress level as in simple tension, but at a much higher strain

energy level. The calculations are carried out with the aid of (2).

The case of triaxial tension introduces some new features into the
picture. In the first place, a truly incompressible material cannot deform
under triaxial tension unless at least one lateral dimension is allowed to
strain. This can be accomplished for example by bonding a cylindrical sample
between two rigid steel plates. In this case, incompressibility of the specimen
is preserved by necking of the sample. Gent and Lindley(zo) subjected such
pokef-chip specimens to tension and found that the stress-strain curve is
linear up to a point at which the sample suddenly develops an internal void;
they term this the triaxial yield point. They show, to a good approximation,
that the average applied stress level S (kg/cmz) at which the void occurs is
given by
53
S = Ee'[i+2a—£;}= Pl & i
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where e' is the strain level at yield
a is the radius of the tablet (cm)
h is the thickness of the tablet (cm)
Pl?n is the maximum hydrostatic pressure acting on the yield

surface just prior to yield (kg/cmz)

For samples characterized by h/a = 0. 3, they measured the yield stress for

a number of rubbers and found experimentally

S‘ = 0.50 + 0O.55 = = 0.59 -Plrn (54)
by (53), so that

P = 0.85+ 094E (55)

Insertion of the tensile modulus of 5. 28 into (55) yields the tabulated
value of 5. 81 kg/(:mz for the indirectly measured triaxial stress on the yield
surface just prior to yield.

| It is possible to calculate how the high triaxial stress originates.
Gent and Lindley assume that a tiny microscopic void is present to start with
at the center of the disk., They assume further that the void is stretched
radially like a spherical cavity, and they compute the stress Px'n as the
point at which the cavity becomes infinitely large. This treatment can be
modified for two reasons. First, when the cavity has grown large, the
radially symmetric stress distribution will become distorted. Moreover,
from the start the cavity is not being elongated equally in all three directions.
Actually; it may be more like extension in the direction normal to the flat
specimen with zero displacement in the two transverse directions. Since
such a displacement field is impossible for a cavity in an incompressible
medium, however, it may be assumed that the cavity is a small cylinder,
lying with its axis perpendicular to the pull direction, and being stretched
radially with its axial length held fixed. This will be closer to reality than
the case of the spherical cavity., The solution of this problem is a classical

case in finite elastic theory (15) the details of which need not concern us here.
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Suffice it to point out that the radial stress in the medium around the

cavity is given by

G b
ek’ en(i‘)\z) * S g% (56)
/L

where the bar over the stress symbol indicates true stress and

—_T

N is the radial extension ratio = Ya'-a® «+"
a is the radius of the undeformed cavity.'

Far away from the cavity, A\ —1 and the stress approaches Pr'n.

Poi ' _ Bdgw 1~ & (57)
5 4

Likewise, the tangential stress at the surface of the cavity is given by

(@_) N NSO - (58)

»la

which, for A\ ¥ 3, behaves exactly like simple tension; this checks the

facts because the surface of the cylinder is assumed to stretch tangentially,
but not axially. On this basis, we choose the yield value for 7\ to be that in
simple tension, namely 6. 00. Substitution into (57) yields for P' a value of

4. 85 kg/cm (tabulated under the headingd at yield), in excellent agreement
with the measured value. Furthermore, it is to be expected that the measured
value will be higher since it is a measured break rather than yield.

The fir'st strain invarient under the radial stretching of the cylinder
is given by

L, = )\z‘ +« 1 « £ (59)
so that using (9)

W, = A (Ai+1«f -3) = ose3(340)= 299 (4
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Thus the strain energy remains constant as in simple tension. With admittedly
only fragmentary evidence it appears that it may not be a poor assumption

to take W‘:l as the yvield criterion. In this particular case, the criterion states
that this particular gum rubber vulcanizate cannot sustain more than 30 kg/crn2
or 425 in-lbs/in3 of strain energy density without yielding. It is suggested,
however, that similar experiments to those of Gent and Lindley in both

tension: and compression be expedited to provide the data needed to define

the yield criterion.

b. Illustrative example:- On the basis of the suggestion made in

the previous section, it seems appropriate to apply the strain energy criterion
to a practical problem in order to demonstrate its use. In the strict sense of
the word, finite elastic theory should be used, butsince not many design
engineers have familiarized themselves with the intricacies of this treatment,
an analysis based on infinitesimal theory will first be presented. We consider
the classical case of pressurization of an infinitely long hollow bonded cylinder
in an elastic case. Since the nomenclature from hereon is familiar, inter-
jections will be sparse. Supefacript bar refers to properties of the metal case.

Using (9) in the form

3 - 2
WA=%/U'[ :‘%)—%‘%}*(%)] (61)

with p as the internal pressure, one finds upon the appropriate substitution

that at the inner surface

R P (1oz)(a/e) 2(-d) 4 3 (1+ ¢ -2v)°
=

62
6+ K_ia- db-2v «+ (a/b):(i—d?)]z o

where ¢ = /é:— [1-3-27)/s] is the effective case rigidity.

For an infinitely stiff case, for example, and typical large web

fractions,

’Pmo.x * 30 ‘wd (63)
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which upon using W, = (M Z\1,-3) from Table II, gives a maximum internal
allowable pressure of 170 psi. Figure 16 shows how W4 varies with Poisson's
ratio for the particular case when ¢ = 0.004, a/b = 0.25 and p = 1000 psi.
Note that Wy increases very rapidly as V falls below 3. The need for such a
large strain energy will in part be eased by relaxation effects in the propellant.
But a very important reason that results in these high values lies in the
error made by assuming small strain theory out to rupture. The error made
is akin to assuming that the initial slope of the tensile curve remains
constant to rupture . Thus the value of 900 psi is not to be treated as
universal, particularly when large strains are involved. On the other hand,
calculations of this sort based on small strain theory do become more meaning-
ful at low temperatures. There the stress-strain curve does become linear,
while the ratio of u to/TZ increases, as does the relative case rigidity effect.

Because it is extermely important to be able to apply the strain energy
criterion to practical cases, the finite elastic analysis of the infinitzly long
internally pressurized cylinder is carried out in Appendix 5. 3 in order to
show the large error engendered by small strain theory. Actually, the
analysis is merely an extension of the results that were presented for the
cavity. In order to keep the analysis fairly simple, it is necessary to assume
incompressibility. The analysis can be carried out for a compressible
material with a bit more difficulty, but for present propellant materials, a
representative strain energy density function is not available.

The result given for the assumed incompressible material

z
2[ W) pd + ()]
P (@) As -1) (64)
» $
which is the large strain analog to (62). For small case rigidities,
W P (65)

N TC Y
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and it is easily seen by comparing (62) and (¢5) that the energy increases
quadratically with pressure in small strain theory, but for large strains
approaches a linear asymptote in pressure.

Thus this illustrative calculation demonstrates that if the strains
are large, much lower demands will be placed upon the allowable strain
energy than were indicated by, for example, the 900 psi figure obtained

by extrapolating the small strain theory.

4. Filled elastomers

Returning now to the practical problem of rocket grain analysis,
it is clear that fracture prediction will not be nearly as simple for highly
filled elastomers or propellants, since the materials are compressible
and yield at strains as low as 20 percent (A = 1.20) where as can be seen
from Table I, the criteria depend upon the stress state.

a. DPossible fracture criteria:- It has been suggested that, in the

case of unfilled elastomers, the distortion strain energy adequately represents
the onset of fracture or yield . In the case of filled elastomers, two factors
complicate the situation; one deals with the cutting of the polymer chains on
the sharp edges of the filler engendered by the high local stresses around the
particles, the other is the generation of voids as the binder is pulled away
from the filler. Cne simple modification to the strain energy function to
account for these factors can be proposed.

The first modification deals with the cutting of polymer chains. This
inference is borne out by constant strain test data (i) as strain is increased,
time to rupture decreases; (ii) at a given strain, the modulus decreases with
time. Thus, from stress relaxation studies at various strain levels, it is
possible to correlate the modulus with some function of time and strain level

and also temperature. The strain energy criterion now becomes:

W & mlt,n, 1) [1,-3 (66)
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Secondly, the void volume must be accounted for since the strain
energy is defined per unit volume of wunstrained material. If g is the

void fraction engendered by pullaway at a given \, then (66) becomes

W, = 3 aeam[T-3101-pn] (67)

where Wy is now measured on the sample including voids. Measurements
of void volumes can be done microscopically on thin films.

Until more definitive data becomes available no attempt will be
made to present an example of typical calculations using actual propellant

material properties.
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F. . Cumulative Damage Theory

In any discussion of failure theory, it is necessary to show the
correlation between experimental data accumulated at constant strain
rates,and actual test and environmental conditions wherein the strain
rate may change slow or fast during the time under consideration. It
has already been proposed in the third progress report that one may
use a cumulative damage concept similar to that used in fatigue analysis
to account for the amount or percentage of resistance to failure used up
as the strain rate takes on various values during the loading cycle.

Since the proposal in that report, McCullough has had occasion
to run a series of preliminary room temperature tests to fracture on
tensile speciméns in an Instron tester at constant and mixed strain rates.
The degree of correlation obtained has been somewhat encouraging even
though limited. It shows cumulative damage tests only 15 to 20 percent
different from predictions based on constant rate data, with the standard
deviation being somewhat lower for a strain rather than energy basis of
correlation.

Further remarks along these lines will also be withheld until a

later time.
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APPENDIX 5.1 - Stress Analysis of 2 Thin Clamped Disk

In the course of analyzing failure characteristics of propellant
specimens, it was indicated that one could test under essentially hydro-
static tension conditions by cementing a thin disk, or poker chip,; of the
material between two rigid (steel) supports and exerting tension in a
direction perpendicular to the faces. Under such loading, the center of
the specimen would be subjected to a three-dimensional tensile stress.
The elementary analysis of the problem, assuming the disk radius is
infinite such that plane strain conditions hold, leads to the result that the
radial and circumferential stresses are equal and, for an isotropic homo-
geneous medium with Poisson ratio, 7 , proportional to the applied axial

N~
stress | 5"

% G- (1)
-+ =

Uf‘ = G~9 =

It may be noted that for an incompressible material not only is the stress
state triaxial, but it is also hydrostatic leading to there being no shear
distortion in the specimen,

Coupon tests have been employed by Gent and Lindley 120 ) in their
experiments upon rubber and by Lehrer and Schwalzbart* in metals. The
purpose of the following analysis is to calculate the stress distribution in a
compressible thin disk of finite radius.

Gent and Lindley were primarily concerned with displacements and
intheir analysis employed what was equivalent to a minimum potential enérgy
solution to predict deformations and an apparent modulus. However, for their
approximation, a variational procedure was not used because the only free
constant in their analysis, the amplitude of the assumed parabolic deformation
or bulge, was fixed by the condition of incompressibility. While it would be
straightforward to extend their analysis by introducing a higher order
deformation shape and provision for compressibility, it does not seem
warranted at this time because our current interest is concerned with

stresses.

* Static and Fatigue Strength of Metals Subjected to Triaxial Stresses"
Institute of the Aeronautical Sciences paper no. 60-12, January 1960.
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Complementary energy analysis

The stress analysis will be carried out using the minimum

complementary energy principle

for a disk of thickness 2h and A o

unit radius. The faces z =+ h AT A A A A S
are assumed to be rigidly bonded ,,% s T, u

to much stiffer supporting plates. e e i e A L 7S LA

We may therefore formulate the
problem, assuming circumferential symmetry, as requiring the satisfaction

of the field equations of equilibrium

3 0% 65 02 3T _
>5r v T ¥  F e N (2)
OTea Tix 90y
e T - + = o (3)
and compatibility
0* 9 az> 2(Gr-0s) | '@ _ . 4
(a_w For Tew/t TSyt * ww gy = © =
Ch L 3 ot 20+-Gs) l CIC
(S ++ 5+ 3a)% +88H 88 ~0 )
o L 9 9" | o'W®
(arl T Foor T a@“—e T Ty o = U (©)
3" 13 D\ _ _T-r e 2
(afl Ty o0 ¢ BH)L“ = v Lv ord: O ()
where @ = Tr+ 0o + U3 . The boundary conditions are on the faces

w(r,o, th) = w(r, 0,28 )= o (8)
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wi(s o,+4) = t W (9)
and on the unloaded circumference

O‘.r‘:l;@)zl)“‘“ Tya (1,9,2) =0 (10)

The elasticity solution to this problem is a formidable one which is
the reason for using an energy approach. The theorem of minimum
complementary energy requires that a proposed stress state is admissible
if

a) it satisfies the stress equations of equilibrium

b) the boundary conditions on that part of the boundary

where stresses are prescribed.

Inspection of (2)-(7), and (8)-(10) indicates by implication that the compatibility
equations may not necessarily be satisfied, nor may the displacement boundary
conditions (8) and (9). The theorem however guarantees that if there is some
arbitrariness in the proposed stress state, it may be adjusted by minimizing

the complementary energy

~

A 20
1]
-A o

1
Hz_lE[G‘fl’G?*qJ - 2 [Q0G GG « G0 | ‘5= ks } rdrd8de

e ! (11)
_Zj ng(rja)wordrde

to give the best possible averaged satisfaction of the compatibility and
displacement boundary conditions.

The heart of the problem lies in the initial choice of the admissible
functions which is accomplished mainly by intuition and experience. Without
any rationalization at this time, consider the following set which was chosen

for reasonable simplicity in the subsequent algebra required.

2 - ¥" 2V
o - 1-_vA['| ‘F]coshv)_v 2 (12)
n P o
Ty = %A[l—(mg* ++ 7 2¢?] cosh V\Z——VV = (13)

* See Sokolnikoff, Mathematical Theory of Elasticity, McGraw Hill, 1956.
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i = To = [1- BT uAesb e~ 5 (14)
) P TR, 2v
By = ATE-T ﬂl/%%} sinh — Z (15)

It will be found upon substitution into (2) and (3) that the equilibrium
equations are satisfied, whereas insertion of r = 1 into (12) and (15)

satisfy (10). The function set is therefore admissible, and furthermore
contains a degree of arbitrariness represented by the, at present, unknown
constants G‘o, A, p, and n. These latter constants will be determined by
minimizing V¥, e.g. 9V*/3Q0, =0, etc.

In passing it may be noted that the exponents n and p must exceed C
and 1 respectively in order that infinite stresses are not introduced at the
origin. Also the set has been chosen in such a way that at the origin
r=2z =0,

Gy = o = T’; Uz (1)
to yield the desired limit as the disk thickness approaches zero, or, what is
the same, the radius of the disk becomes infinitely large. Finally Uo v
although unknown; may be identified as the average tensile stress acting on
the face to cause the deformation W

For convenience, we define

R (18]

and proceed to insert (12)-(15) into (11) to obtain the complementary energy
as a function of the parameters, V* = V*(A, (To, n, p). After the intergration

and algebraic reduction, there results

*

_gv = (S‘,+S,_-219§‘.,)tla- Sstz—Z‘\)Ssts 2= Z(lfp)set“ (17)
"

+ 0GP - 2E w.G + /*QAG;(%LS)S\ah/A&



-52

Where the following notation has been employed

z

™ n
S, 2(n+1)(n +2)
S, = 2(n+1)[ n(nté) B 1 ] P+ 15 3(Ps1) |
4(?\4-2)(7\4—4) nN+«p+3 6(P+3) 2<P+2)(P*S)
(p-0°
S, ——2P‘
S, — n(p-1)(n+P+7)
4‘
4(P+3)(Vl+p+%Xln+4)
_n(p-1)
55 = P+ L
S¢ = -0
4(p+3)(P+1)
e = .L-;A_‘z_ [st.nh2/a.el + 2_/‘_&]
N SN\ I TR
Al - "
ty = %-{Smfzzﬁﬁ\+2/ufj - G—C,A/,g s }A_,ﬁ\
Atr -
ty = J‘—Z—— ]:slw& 2ph « ZJJ\J

The minimizing condition QV*¥/ D A = O leads to

(28)

25, ~2vsg u? — o 2] bk

(B8, 295 ub 455 -2V fSs + 2(1ew) s ) [snhded « 2uh] - #(v) 3L S
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while 2 V*/Q O‘o = O in conjunction with (28) gives

. E;, (29)
IR 5y [28s @Ss + b} vi' 1 sk’ ok

2/«& {L(S‘-&SL —21?5,‘)/“14_ 55—21)/.«.255 +2(1W)/u.236][sfnh 2/4.& +Z/‘£J o 8/.«1,&(“-4»)5‘}

which value of C’o can be inserted into (28) to determine A = A(wo). With
A and (To known as functions of (n, p, wo)/, they can be inserted into (17)

to find

X

V = V*<V\,‘P},Wa) (30)

In principle, therefore, one could add the additional minimizing conditions

OV*/ dn=Cand 9OV*/ Jp =C and find finally n and p as functions of
the applied deformation W and of course the thickness parameter h. Hence,
all the constants A, (To“ n, and p are known in terms of wy and h and can be
placed back into the stress distribution (12)-(15) to give the final approximate
stresses.

From the algebraic standpoint, however, it proves simpler to try
various values of n, and pJ. in (30) and compute the corresponding value of
V*. There will be some pairs that will give the algebraic minimum by this
trial and error procedure which is equivalent to applying the minimizing
conditions.

At this sfage in the analysis, it is worth reéxamining the necessity
for finding this stress distribution with due consideration to the computational
work involved. At least one solution is now available, but it may be worth
investigating other function sets to see if they may be computationally simpler,
Furthermore, it is recommended that any computations be first carried out
for an incompressible medium, vV = %, V/AZ = 1

If additional work on this solution or variations of it are thought
warranted, it will be reported at a later time. The only qualitative statement

which can be made at this time is that the true values of n, p will probably
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be fairly large corresponding to a stress distribution fairly close to
(1) over a large part of the central portion of the disk. One major
limitation of the technique is that both n and p will depend upon the
width/thickness ratio of the sample, so that a parameter study of

the latter ratio would entail an jteration of the computation of n and p.



-55

APPENDIX 5.2 - Crack Propagation in Viscoelastic Media

In the body of the report, the stress distribution near a small
crack in a large thin sheet subjected to a uniform tensile stress was
discussed. Further, it was pointed out that the viscoelastic and elastic
stress distributions are the same for this loading, thus leading to the
possibility of computing the viscoelastic strains and displacements from
the basic elastic information. The purpose of the following analysis is to
use this information to predict crack propagation characteristics in a
viscoelastic medium.

From the basic solution (26) the biaxial stress distribution in the

plate strip subjected to a tension do is

(N I O O A 6, &
dx(x'o)z‘lx‘—-b‘-['x-»-m] 5 X>b (1-a)

p = o fpE ~ 1Ol Tt x=brey,

bl
dﬁ(x'0)=d°§‘+m[y+mli; x>b (2-a)
5 - +
l | b4 | o, =0’ow%+o[(_i_>2]§; x=bve,

Fia 5.2 a

where it is clear that the stress becomes infinite as the point of the crack

is approached. In order to circumvent the necessity for conducting a large
strain, elasto-plastic solution; it will arbitraily be assumed that the stress
may build up to a specified value at a distance § from the crack tip and remain

constant throughout the interval 0 < x-b £ § until an ultimate one-dimensional

strain & * is reached.
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It should be observed that the elastic

solution is no longer correct, because
the specimen, by the equations of
equilibrium, is presumed to be
absorbing the stress indicated by the
dashed line. Thus the load represented |
by integrating the stress between x = b
and x = b + § is not accounted for when

the truncation is made. Therefore the

actual stress distribution would be more like the dotted line, with the additional

area accomplishing the necessary force balance. On the other hand, because

Gx, A :
|
Ty ‘A
\ 2:‘
SA
AZ
e ||
T

Fig. 5.2 C

x=b+e

this (dotted)distribution cannot easily

be calculated, and because it is desirable
to still have the force balance, the analysis
will be carried out using the modified
truncated stress distribution shown in
Figure 5.2-c on which areas Al and Ay

are equal. If the existence of such
quantities as &€ * and § can be established
by experiment, then the following

analysis could lead to useful results.

Visualize then, the conditions along the line of crack prolongation, and

assume that the internal forces along the shear free line are carried, for

simplicity, by a series of discrete Voigt elements averaged over the characteristic

length §. The mechanism postulated is that each element will strain as a result

of stresses ( o‘x and Gy) which are constant over the length § assigned to each

element as shown in Figure 5.2-d. The valuesof these stresses are determined

dx, A ot
6 |\ R

' ~s| s

CRACIK
ELEMENT
I

b0 |

Yy - e e |

lsi‘_x=b+€

from equations (1) and (2) and the
equilibrium condition discussed earlier.
Namely we assume that for a crack
width 2b, the stresses acting on

element (n) are the average values:
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‘ S (3-2)
2 L i -[28 B, % 2—{? z— - !

=1f2’5=/b[(n+1)2~—?]-l-i-;‘_—‘l—;[(n-i—l)z-n 1+ = [n+d=n]+

ba+(n+) § b+ (n+1)§
EY&:J—S : ""Ax ‘—S%H_wl l:}[’x-t-v;‘i \,t'l‘g
(o S - 8 ST Xt

’—"—vgzgz[(h-ﬂ)in%] + ﬁ:{%[(nﬂ %vn% 24’ [y m 1+ ---
After the strain in the first element réaches € *, it will break and the
stress distribution will shift by one § width; i.e., the stress which had
been acting on the element n is now acting on element n + 1, where the
effective crack length to be used is 2 (b + § ). After m translations, or
after element (m - 1) breaks, one has

G (m) . )
Ho = 53 2 3
0,  \2%/(b+m )[( m+\) = (n-m) }+4 b+Tns[(rz—m4-|)2_ (MY - - (4-2)
(my
e nx <+ '

To reiterate,’ o‘i‘m) is the average stress acting on element (n) before
element (m) breaks, but after element (m-1) has parted. Thus, the

stress at the crack tip is given approximately by

M. _20 . ™ 4-b
Op EF=2 G+ 0, (4-b)
+m§

It is clear that if § is assumed to be a fixed characteristic dimension,
the stress acting on the element at the crack tip is not limited, but
increases with crack length. However, in the initial stages of crack
growth (m § << b) the stress is practically constant as seen from
equation (4-b). ‘

Since we now have the two-dimensional stresses as a function of
crack position, the time dependent strain in each element can be found

from the plane stress, stress-strain equation. For an elastic material,

we have

—_— =
=0 (c‘% 1 6,) (5)
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For simplicity we will assume an incompressible medium ( ¥ =3). The

viscoelastic strain is obtained in the usual manner by replacing E by its

(1)

equivalent differential operator, which for a Voigt model is

E— 5, (25 +) (6)

where

E_ ' = modulus of the spring in parallel with a dashpot
with viscosity n

i =E'.L = retardation time of model

Insertion of (6) into (5) yields the viscoelastic stress-strain equation which

applies to each element

o €y = —l;—,,[ 0’43--—2‘,75;]

\
=-;;_'E;[61+6,]

In terms of the notation used in equation (4), equation (7) becomes

(7)

’ (m)
del™ G, [ Ony (8)
I at * e ZE [ o, " ‘}

where é(:)is the strain in element (n) before element (m) breaks, but
after element (m-1) has parted. If we denote the time at which element(m)
breaks by tm, then equation (8) applies to the time interval tm_1 <tg t
In this time interval the right hand side of (8) is constant so that we can
integrate it for the strain:

d:m) (m- l)b t -tm~\
=[]+

(m)
€, M=

(9)

G’naa + ‘)} e

~t:m--ls T < -tm

E

3 25,,
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M-0b . o defined as the strain existing in element (n) atthe time

where €&,
element (m-1) breaks, whichist ;. If wesett=t _,in equation (9),
the initial condition

(m) m-1)b

(-t m—n) s e

is satisfied. Lettingt — o, we have

‘m) (m)
w _

2 2
+§.— 7 8 b+n1£[(n"m"")z ”(“—m>?1+“— ?S

= 5
(n m-+1) —(n—m)zl

(10)

which is the long-time or equilibrium strain that would result if element (m)
did not break. It is seen from equation(10) that this is a known value if the

crack position is given. Therefore as a matter of convenience we shall
write (9) as

e oY
m)
=e‘ [é““ b 1@ (11-a)

and the strain at the time when element m breaks

1 T.m_ , (11-b)
mb o m-')b
e &Nl mle

This expression can now be used to calculate the time at which each element
breaks and hence will give the crack velocity as a function of time.
Consider first the strain in element zero for Ostgto, so that

n=m=0 and

;t_t_!_
(0) (-\)b
L= &5 g &t el e
in which we must define t__l = 0, eg'l)b = 0 to satisfy the initial condition

that the material is unstrained at t = 0. Hence
.t
©__ () -
e'=¢e, [\-e F]

element (0) breaks at t = t when e( ) (t ) = e (O)b c *,

e*:: (0“3 (o) [\ _e"‘ E‘J (12)
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Solving for tye *
5 1 € 13
T . | SRt )
o

which is the time that elapses before the crack starts to run. From equation
(10)

(o)
©)) Ge E_g_
0= [ I, ]
. | | l\JZ_g
- +---
Ev{ 25/b - 816 }
assuming (—)<<|
.t° W 28

Equation (11) gives the strain in the next element at t = t, as

fe

e s 3 [a. e’ e = e

- (15)

In order to find tl' & l‘db must be determined from (11-b) and (12)

(°)b (o) [l—- ‘—] P GM e'

Inserting this expression in (15) and solvmg for t, ,

() 0)

=S M & ©)
Lo t°—ﬁa{—“—‘_%=—?&+h§l+é [~ Se/ee E (16)

. el

It is observed that all of the strains appearing are equilibrium values and

are thus known from equation (10). By assuming that the strain € * at which the
element breaks is much smaller than the equilibrium strain e“;_ or
equivalently that the retardation time T'is much larger than the time interval

t, - t,, equation (16) simplifies to

(O)

::-_' = e(u [‘_
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Using (10) and assuming —S_Zb-<<\ , it is found that

‘t. y " <™ \[2 S/ (2=y2)
= +
z o G./E,)

(17)

The initial velocity of crack propagation is given by

S _ 8/2
b t-t, T —*%

and from (17) is approximately

e Co/E,\b S (18)
'ozeta2@z-1)

As a rough means of estimating $ , consider McCullough's preliminary data

(25)

Figure 15 in the region of constant stress, from which Va2 x 10"3 in/ sec,
Go * 20 psi, b = 0.2 inches. Using typical room temperature properties
gives §x 10’3 inches, which does not seem to be an unreasonable magnitude
and may be thought of as a characteristic strand diameter. Note, as

hypothesized §/b« 1

Calculation of crack tip velocity as a function of tip location. -

With these results appearing reasonable, it is appropriate to extend

the analysis and obtain an expression for crack tip velocity as a function of

m)b

crack growth. To do this, the expression (11-b) for € (m)® o ust first

be expanded so that all of the strains which appear on the rxght hand side are

the known equilibrium values. It is seen from (11-b) that €n(m-l.)b must

be replaced by a function of equilibrium strains. If we write

s = - = __'t -"t -2
E(m nb,_ L‘m l) e [e(m z)i er(‘:t |)]e _m_.l.,E_"‘_

n

it is seen that en(m-l)b is in terms of equilibrium strains and & n(m-Z)b'

Continuing this process until the only non-equilibrium strain in the expression
£ (m-1)b . -1b_ . . : (m-1)b
or én is &€ " = 0, we obtain the desired expression for én :

Substitution of this result into (11-b) leads to the representation

( m ¢ .) ()« - Em=T4y
M= are Z[ M) el e T E (19)
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=it
where, as before, we have defined B T =0°. Noting that
Em(m)b is the strain in element (m) just when element (m) breaks, and
is therefore € *,
€, =&'= & +Z[e ]e. z (20)

Since all of the strains in this equation are known, as given by (10), equation
(20) can be used to solve explicitly for crack tip velocity

s S $/7
SN S G = ) Y
in which V__ is the velocity when the tip is at element (m). It will be

convenient to rewrite (20) in the following form

Tm—tj
PR ... >, [
c*= o{ = 21
Z J€ W\:o, 1’2,_-' ( )
where we have defined
— T

°(M=‘-'€— i =

To illustrate the significance of (21), it is expanded for m =0, 1, 2, 3:

m=0: [| ] (22-a)

T E|-t _'t ~Te
ms= | : e - £T]e Taelli-e 7] We-Ry

m=2: e=¢e[i—-¢e z]e & +€ (')[I e."’c—t']e_"".?EL (t)[l ‘E"—*] (22-c)

I I -tT-
m=3: e*=¢e[i-e z]e Bgte (‘)[l—ehfalﬁ E, i-e= 1 (22-d
+e.21- o

It is clear that 1f1’:’1§;t- <& | » the exponential terms which multiply ., can
be taken as unity so that (21) becomes

& T e"’oz (23)

o
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Utilizing (22-2) for € *, we can rewrite (23) as

m=1 (§) "
ok JUOE GO, e (24)
b j=o €e? wy
je
where
(m)

If it is further assumed that only the first term in the equilibrium strain (10)
need be considered {i.e., that the strain resulting from the leading term in
the stresses (l-b) and (2-b) provides the main contribution to failure) then
from (10)

(%h] c \
N R — z . E
me Evvz_‘g' [(m_j+02_(m_3)z] (25-a)
b+3jé
and
(m) . — Co (25-D)
éme_ o =y /
b+mé
Substituting (25) into (24) gives the recurrence expression for;i.”'! :
o
w,n m-i - 1 _é_ w s
s ’ F3 g
T = JZ_“ [(m-3+|) -(m=3) ] —Ji- (26)

Calculations give, for example

Wo
= |, .71, 2,27, 275, --- Sor m=0,1,2,3,---
m

It can be deduced that

Wwm A
—— = = B vk 27
Wo TYm -

Under the assumption that ;Fz_:'.'.'<<| ’

Ly = Em= Tmr

=
so that
(
Wi Encm _ GAbNi+FmMmEL =t
w° 622040 - Eve*vz vg t

g.Y'+méb VSb
=,e'Vz 2Va o
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Solving for Vm and using (27) we find

T S/Ev b m (29)
U e e,..v t\lmga('*'—é‘) m>4

showing that the velocity increases without bound is the crack grows which

it

is impossible because free running cracks are known to be limited by speeds
of the order of half the shear wave speed. However such a result is not
surprising since inertia has not been included in the formulation, Nevertheless
(29) may provide a reasonable approximation to the crack tip speed if it is
sufficiently less than the shear wave speed.

Passing to the continuous form by letting m § = s, in which s is the

distance the crack tip has traveled, we have

eds . T G/, b 0-a)
V=g =g o st szas (002

which shows

V o< _Sl; &;{sfb_«‘ (30-b)

The initial behavior indicated in (30-b) results from the increasing amount
of strain which accumulates in the elements ahead of the crack as it
propagates. This increase in velocity when §<« b occurs while the stress
at the crack tips remain essentially constant as seen from equation (4-b)
However, the fact that the stress is proportional to Vs for s > 1 accounts
for the more rapid increase in velocity shown by (30-c).

The time dependence of crack growth can be determined from (30-a)
by integration:
_X_Go/ey £

VH-i; ﬂf-—-i o e¥E e~ = (31-a)

so that * v
S o/[E 1-b
b = [4\{5 pre t] ﬁfs—i‘«' S
m_Co/Eyt (31-c)
T=ge™ oz 2> '
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Remarks. -

The proposed phenomenological model is by no means unique, with
it being possible to include a more complicated material representation
instead of the incompressible VOigt model used here. Also it should be
possible to introduce a more sophisticated fracture criterion if necessary,
based not upon maximum strain, but perhaps octahedral strain as a function
of strain rate and cumulative damage. Further, for ease in manipulation,
the discrete element formulation might be replaced by a continuous material
formulation. Finally a basic investigation might be conducted to ascertain the

physical significance of the characteristic strand diameter, 8 , incorporated

in the analysis.
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APPENDIX 5.3 - Large Plane Strain Analysis for Distortion Energy
in a Hollow Tube

The strain transformation in cylindrical coordinates is given
r = F(T‘); 6 =6 3"-:’2- (1)

Here the superscript bar indicates the deformed or Eulerian coordinate.

The Jacobian of the transformation is given by

’dF ' Z_l_i 5} o ar

!FJé = 5 T ollede (2)
{ ©

[ fjee

i d

{ 5 Q o { o3

Incompressibility demands that

dr , ¥
Jexgrt =1 (3)
T2 = r%4 d% - g% = N (4)
2 B -
)\ = 1 T P (5)
di
dr T N
Substitution into (2) yields
T o L4k (6)
M A
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—— 5 )\2+E (7)

The equilibrium equation is cast in Eulerian coordinates

- _ dF

= 2. 8 8
T a7 (8)

" Substituting (6) and (7) yields after integration

K
R = ¢= IlnA— 32 (9)
a;r } >\ _L
— = C - (n -+ 7 (10)
m 2N

At the inner surface, radius a

(11)
o L
i = B In Aa + T (12)

At the propellant-case interface, the radial stress (r=b) is taken to be - pi

- b, |
e = ln A+ —
)\2‘D = 4+ m(Aa-1)
(14)
where again
-
- b (15)
- bs { 4 [n D (16)
— —— n
yn a2z T AL
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The strain energy is easily seen to be a maximum at a , so that
Wo. = — m 3) Z /\ + >\2 -—2> (17)

The interfacial pressure is determined by matching with the case. We

have using a prime to indicate properties in the metal

B
T = A= T2 (18)

\

%=A(£27+i281
P = Zu (19)
At r=b, we have

. - B

-k A b2 (20)

Neml _ (p) _ A(-2) B
o (—)b " . 2/4/.'}:2 (21)

Note that we equate (u'/r)b to the finite (Murnaghan strain) to be consistent
with large strain theory, even though we use small strain theory in the case.

At the outer surface of the case, the pressure is assumed to be zero, so that
2
B= Ac (22)

Solution is expedited by defining, as before

/(.’.Ll(rf-;- ?_25_2_2/)

so that At—1 - _P_“' ¢ (24)

ASE
I

(23)
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Substitution into (6) yields

=
Bl Al Einde g Neol
BT aaE T 2 e ) (25)

and with (64) , there results

2
b s 4 s l l >\c\ _g. \7_‘4 "
JA 1+m()\7;-|) )\az " n1 ,,_m(}‘;-_')"' b m(/a )(2 )

Since A, will beapproximately 4 near the yield, (6) is easily approximated
by

P m/2 .
,l_A— = 5 (>\a' {) using m = a/b (27)
and the strain energy becomes
p? g”
w £, 2 (28)
2Zmpp + 2um
This expression is to be compared with (8) for V =1
1,42 E
max_ 2p ¢ - N ¢ (29)
2ulp+m(1-¢)] 2 um?

for small ¢. Thus, in small strain theory, the energy increases quadratically
with pressure, whereas the dependence becomes linear in the large strain theory,
i.e.,

(AT Zm (30)
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Fig. 6 - Poisson's Ratio
vs finite strain.
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