232 research outputs found

    Projections for future radiocarbon content in dissolved inorganic carbon in hardwater lakes: a retrospective approach

    Get PDF
    Inland water bodies contain significant amounts of carbon in the form of dissolved inorganic carbon (DIC) derived from a mixture of modern atmospheric and pre-aged sources, which needs to be considered in radiocarbon-based dating and natural isotope tracer studies. While reservoir effects in hardwater lakes are generally considered to be constant through time, a comparison of recent and historical DI14C data from 2013 and 1969 for Lake Constance reveals that this is not a valid assumption. We hypothesize that changes in atmospheric carbon contributions to lake water DIC have taken place due to anthropogenically forced eutrophication in the 20th century. A return to more oligotrophic conditions in the lake led to reoxygenation and enhanced terrigenous organic matter remineralization, contributing to lake water DIC. Such comparisons using DI14C measurements from different points in time enable nonlinear changes in lake water DIC source and signature to be disentangled from concurrent anthropogenically induced changes in atmospheric 14C. In the future, coeval changes in lake dynamics due to climate change are expected to further perturb these balances. Depending on the scenario, Lake Constance DI14C is projected to decrease from the 2013 measured value of 0.856 Fm to 0.54–0.62 Fm by the end of the century

    Petrogenic organic carbon retention in terrestrial basins: a case study from perialpine Lake Constance

    Get PDF
    Inland waters play a major role in the global carbon cycle, with particulate organic carbon (POC) burial in terrestrial wetlands surpassing that in ocean sediments. Lake Constance, the second largest lake at the periphery of the European Alps, receives POC sourced from both aquatic and terrestrial productivity as well as petrogenic OC (OCpetro) from bedrock erosion. Distinguishing POC inputs to lake sediments is key to assessing carbon flux and fate as reworked OCpetro represents neither a net sink of atmospheric CO2 nor source of O2. New stable and radiocarbon isotopic data indicate that 11 (9–12) Gg/yr of OCpetro is buried in Lake Constance with underlying sediments on average containing 0.3 (0.25–0.33) wt% OCpetro. Extrapolation of these results suggests that 27 TgOCpetro/yr (12–54 TgOC/yr) could be subject to temporary geological storage in lakes globally, which is comparable to estimates of 43−25+61 TgOCpetro/yr delivered to the ocean by rivers (Galy et al., 2015). More studies are needed to quantify OCpetro burial in inland sedimentary reservoirs in order to accurately account for atmospheric carbon sequestration in terrestrial basins

    Fluctuating work in coherent quantum systems: proposals and limitations

    Full text link
    One of the most important goals in quantum thermodynamics is to demonstrate advantages of thermodynamic protocols over their classical counterparts. For that, it is necessary to (i) develop theoretical tools and experimental set-ups to deal with quantum coherence in thermodynamic contexts, and to (ii) elucidate which properties are genuinely quantum in a thermodynamic process. In this short review, we discuss proposals to define and measure work fluctuations that allow to capture quantum interference phenomena. We also discuss fundamental limitations arising due to measurement back-action, as well as connections between work distributions and quantum contextuality. We hope the different results summarised here motivate further research on the role of quantum phenomena in thermodynamics.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and Outlook", (Springer International Publishing). Second version: Misspell in the title correcte

    Negativity and quantum discord in Davies environments

    Full text link
    We investigate the time evolution of negativity and quantum discord for a pair of non-interacting qubits with one being weakly coupled to a decohering Davies--type Markovian environment. At initial time of preparation, the qubits are prepared in one of the maximally entangled pure Bell states. In the limiting case of pure decoherence (i.e. pure dephasing), both, the quantum discord and negativity decay to zero in the long time limit. In presence of a manifest dissipative dynamics, the entanglement negativity undergoes a sudden death at finite time while the quantum discord relaxes continuously to zero with increasing time. We find that in dephasing environments the decay of the negativity is more propitious with increasing time; in contrast, the evolving decay of the quantum discord proceeds weaker for dissipative environments. Particularly, the slowest decay of the quantum discord emerges when the energy relaxation time matches the dephasing time.Comment: submitted for publicatio

    Online 13C and 14C gas measurements by EA-IRMS–AMS at ETH Zürich

    Get PDF
    Studies using carbon isotopes to understand the global carbon cycle are critical to identify and quantify sources, sinks, and processes and how humans may impact them. 13C and 14C are routinely measured individually; however, there is a need to develop instrumentation that can perform concurrent online analyses that can generate rich data sets conveniently and efficiently. To satisfy these requirements, we coupled an elemental analyzer to a stable isotope mass spectrometer and an accelerator mass spectrometer system fitted with a gas ion source. We first tested the system with standard materials and then reanalyzed a sediment core from the Bay of Bengal that had been analyzed for 14C by conventional methods. The system was able to produce %C, 13C, and 14C data that were accurate and precise, and suitable for the purposes of our biogeochemistry group. The system was compact and convenient and is appropriate for use in a range of fields of research

    Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments

    Get PDF
    Highlights • Continental margin-scale spatial variability in C values among grain size fractions is presented. • Two different hydrodynamic modes influencing in 14C heterogeneity are identified. • A new index (H14 index) is defined to describe overall 14C heterogeneity within marine surface sedimentary OC. Abstract The deposition and long-term burial of sedimentary organic matter (OM) on continental margins comprises a fundamental component of the global carbon cycle. A key unknown in interpretation of carbon isotope records of sedimentary OM is the extent to which OM accumulating in continental shelf and slope sediments is influenced by dispersal and redistribution processes. Here, we present results from an extensive survey of organic carbon (OC) characteristics of grain size fractions (ranging from <20 to 250 μm) retrieved from Chinese marginal sea surface sediments in order to assess the extent to which the abundance and isotope composition of OM in shallow shelf seas is influenced by hydrodynamic processes. Our findings show that contrasting relationships exist between 14C contents of OC and grain size in surface sediments associated with two different hydrodynamic modes, suggesting that transport pathways and mechanisms imparted by the different hydrodynamic conditions exert a strong influence on 14C contents of OM in continental shelf sediments. In deeper regions and erosional areas, we infer that bedload transport exerts the strongest influence on (decreases) OC 14C contents of the coarser fraction, while resuspension processes induce OC 14C depletion of intermediate grain size fractions in shallow inner-shelf settings. We use the inter-fraction spread in 14C values, defined here as 14H , to argue that the hydrodynamic processes amplify overall 14C heterogeneity within corresponding bulk sediment samples. The magnitude and footprint of this heterogeneity carries implications for our understanding of carbon cycling in shallow marginal seas

    The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0

    Get PDF
    Marine sediments play a crucial role in the global carbon cycle by acting as the ultimate sink of both terrestrial and marine organic carbon. To understand the spatiotemporal variability in the content, sources, and dynamics of organic carbon in marine sediments, a curated and harmonized database of organic carbon and associated parameters is needed, which has prompted the development of the Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC) database (http://mosaic.ethz.ch/, last access: 26 July 2023; https://doi.org/10.5281/zenodo.8322094, Paradis, 2023; https://doi.org/10.5168/mosaic019.1, Van der Voort et al., 2019​​​​​​​). MOSAIC version 2.0 has expanded the spatiotemporal coverage of the original database by &gt;400 % and now holds data from more than 21 000 individual sediment cores from different continental margins on a global scale. Additional variables have also been incorporated into MOSAIC v.2.0 that are crucial to interpret the quantity, origin, and age of organic carbon in marine sediments globally. Sedimentological parameters (e.g. grain size fractions and mineral surface area) help understand the effect of hydrodynamic sorting and mineral protection on the distribution of organic carbon, while molecular biomarker signatures (e.g. lignin phenols, fatty acids, and alkanes) can help constrain the specific origin of organic matter. MOSAIC v.2.0 also stores data on specific sediment and molecular fractions, which provide further insight into the processes that affect the degradation and ageing of organic carbon in marine sediments. Data included within MOSAIC are continuously expanding, and version control will allow users to benefit from updated versions while ensuring reproducibility of their findings.</p

    Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon

    Get PDF
    The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models

    Climate control on terrestrial biospheric carbon turnover

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.)
    corecore