11 research outputs found

    Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection

    Get PDF
    Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients, and antibiotic treatment is compromised by multidrug-resistant strains resistant to β-lactams, carbapenems, cephalosporins, polymyxins, and tetracyclines. Among COVID-19 patients receiving ventilator support, a multidrug-resistant A. baumannii secondary infection is associated with a 2-fold increase in mortality. Here, we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break the resistance of A. baumannii to tetracycline class antibiotics. In vitro, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multidrug-resistant A. baumannii, and any resistance that did arise imposed a fitness cost. PBT2 and zinc disrupted metal ion homeostasis in A. baumannii, increasing cellular zinc and copper while decreasing magnesium accumulation. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant A. baumannii. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multidrug-resistant A. baumannii infections. Importance: Within intensive care unit settings, multidrug-resistant (MDR) Acinetobacter baumannii is a major cause of ventilator-associated pneumonia, and hospital-associated outbreaks are becoming increasingly widespread. Antibiotic treatment of A. baumannii infection is often compromised by MDR strains resistant to last-resort β-lactam (e.g., carbapenems), polymyxin, and tetracycline class antibiotics. During the on-going COVID-19 pandemic, secondary bacterial infection by A. baumannii has been associated with a 2-fold increase in COVID-19-related mortality. With a rise in antibiotic resistance and a reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. Rescuing the efficacy of existing therapies for the treatment of MDR A. baumannii infection represents a financially viable pathway, reducing time, cost, and risk associated with drug innovation.David M.P. De Oliveira, Brian M. Forde, Minh-Duy Phan, Bernhard Steiner, Bing Zhang, Johannes Zuegg, Ibrahim M. El-deeb, Gen Li, Nadia Keller, Stephan Brouwer, Nichaela Harbison-Price, Amanda J. Cork, Michelle J. Bauer, Saleh F. Alquethamy, Scott A. Beatson, Jason A. Roberts, David L. Paterson, Alastair G. McEwan, Mark A.T. Blaskovich, Mark A. Schembri, Christopher A. McDevitt, Mark von Itzstein, Mark J. Walke

    Peptide-based molecules in angiogenesis.

    No full text
    Angiogenesis refers to the process of remodeling the vascular tissue characterized by the branching out of a new blood vessel from a pre-existing vessel. Angiogenesis is particularly active during embriogenesis, while during adult life it is quiescent and limited to particular physiological phenomena. Recently, the study of molecular mechanisms of angiogenesis has stirred renewed interest due to the recognition of the role played by angiogenesis in several pathologies of large social impact, such as tumors and cardiovascular disease, and due to the pharmacological interest rising from the possibility of modulating these phenomena. Antibodies, peptides and small molecules targeting active endothelial cells represent an innovative tool in therapeutic and diagnostic fields. In this article we reviewed the literature of peptide and peptidomimetics in angiogenesis and their potential applications. Two specific protein systems, namely the Vascular Endothelial Growth Factor (VEGF) and its receptor and Integrins, will be discussed in detail
    corecore