125 research outputs found

    S100B is increased in mood disorders and may be reduced by antidepressive treatment

    Get PDF
    Previous studies have reported alterations of glial cells and particularly astrocytes in mood disorders. Therefore, serum concentration of the astrocytic marker S100B was ascertained with an immunoluminometric assay in 20 patients with mood disorder and 12 healthy age-matched controls. Serum S100B was elevated in major depression (median after admission 410 ng/l, at discharge < 100 ng/l) and mania (130, 160 ng/l), when compared with controls (< 100 ng/l; rho< 0.01). Antidepressive treatment reduced S100B in conjunction with severity of depressive symptoms ( rho< 0.01). The severity of depression (Hamilton Depression Rating Scale) was positively correlated with S100B (r(s) = 0.51, rho< 0.005). Elevated serum S100B during depressive and manic episodes of mood disorders may indicate alterations of astrocytes, which are reversed by antidepressive treatment

    Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia

    Get PDF
    Previous studies reported controversial results concerning alterations of astrocytes in schizophrenia. Because S100B may be regarded as a marker for astrocytes, the objective of this study was to examine S100B serum concentrations in 30 patients with schizophrenia with a monoclonal two-site immunoluminometric assay that specifically detects S100B. An ANOVA revealed medication (p0.05). Patients with deficit (250.6±154.9 ng/l) had higher S100B levels than patients with nondeficit schizophrenia (146.7±107.2 ng/l, p<0.05) or controls (p<0.005). S100B was positively correlated with the subscore ‘thought disturbance’ of the Brief Psychiatric Rating Scale (p<0.05). In summary, increased serum levels of S100B may indicate alterations of astrocytes during early treatment with antipsychotics and in deficit schizophrenia. Whether S100B is elevated due to injured astrocytes and a disrupted blood–brain barrier, or by active secretion of S100B by astrocytes, has to be clarified by further studies

    M01 as a novel drug enhancer for specifically targeting the blood-brain barrier

    Get PDF
    Drug delivery to the brain is limited for most pharmaceuticals by the blood-brain barrier (BBB) where claudin-5 dominates the paraendothelial tightening. For circumventing the BBB, we identified the compound M01 as a claudin-5 interaction inhibitor. M01 causes transient permeabilisation of the BBB depending on the concentration of small molecules in different cell culture models within 3 to 48 h. In mice, brain uptake of fluorescein peaked within the first 3 h after M01 injection and normalised within 48 h. Compared to the cytostatic paclitaxel alone, M01 improved delivery of paclitaxel to mouse brain and reduced orthotopic glioblastoma growth. Results on interactions of M01 with claudin-5 were incorporated into a binding model which suggests association of its aromatic parts with highly conserved residues of the extracellular domain of claudin-5 and adjacent transmembrane segments. Our results indicate the following mode of action: M01 preferentially binds to the extracellular claudin-5 domain, which weakens trans-interactions between adhering cells. Further decrease in membranous claudin-5 levels due to internalization and transcriptional downregulation enables the paracellular passage of small molecules. In summary, the first small molecule is introduced here as a drug enhancer, which specifically permeabilises the BBB for a sufficient interval for allowing neuropharmaceuticals to enter the brain

    Visualization and Quantitative Analysis of Reconstituted Tight Junctions Using Localization Microscopy

    Get PDF
    Tight Junctions (TJ) regulate paracellular permeability of tissue barriers. Claudins (Cld) form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.e., density, branching and continuity). To investigate determinants of the morphology of TJ-strands we established a novel approach using localization microscopy

    Caveolin 1 protein expression in renal cell carcinoma predicts survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caveolae play a significant role in disease phenotypes such as cancer, diabetes, bladder dysfunction, and muscular dystrophy. The aim of this study was to elucidate the caveolin-1 <it>(</it>CAV1<it>) </it>protein expression in renal cell cancer (RCC) and to determine its potential prognostic relevance.</p> <p>Methods</p> <p>289 clear cell RCC tissue specimens were collected from patients undergoing surgery for renal tumors. Both cytoplasmic and membranous CAV1 expression were determined by immunohistochemistry and correlated with clinical variables. Survival analysis was carried out for 169 evaluable patients with a median follow up of 80.5 months (interquartile range (IQR), 24.5 - 131.7 months).</p> <p>Results</p> <p>A high CAV1 expression in the tumor cell cytoplasm was significantly associated with male sex (p = 0.04), a positive nodal status (p = 0.04), and poor tumor differentiation (p = 0.04). In contrast, a higher than average (i.e. > median) CAV1 expression in tumor cell membranes was only linked to male sex (p = 0.03). Kaplan-Meier analysis disclosed significant differences in 5-year overall (51.4 vs. 75.2%, p = 0.001) and tumor specific survival (55.3 vs. 80.1%, p = 0.001) for patients with higher and lower than average cytoplasmic CAV1 expression levels, respectively. Applying multivariable Cox regression analysis a high CAV1 protein expression level in the tumor cell cytoplasm could be identified as an independent poor prognostic marker of both overall (p = 0.02) and tumor specific survival (p = 0.03) in clear cell RCC patients.</p> <p>Conclusion</p> <p>Over expression of caveolin-1 in the tumour cell cytoplasm predicts a poor prognosis of patients with clear cell RCC. CAV1 is likely to be a useful prognostic marker and may play an important role in tumour progression. Therefore, our data encourage further investigations to enlighten the role of CAV1 and its function as diagnostic and prognostic marker in serum and/or urine of RCC patients.</p

    Sepsis Enhances Epithelial Permeability with Stretch in an Actin Dependent Manner

    Get PDF
    Ventilation of septic patients often leads to the development of edema and impaired gas exchange. We hypothesized that septic alveolar epithelial monolayers would experience stretch-induced barrier dysfunction at a lower magnitude of stretch than healthy alveolar epithelial monolayers. Alveolar epithelial cells were isolated from rats 24 hours after cecal ligation and double puncture (2CLP) or sham surgery. Following a 5-day culture period, monolayers were cyclically stretched for 0, 10, or 60 minutes to a magnitude of 12% or 25% change in surface area (ΔSA). Barrier function, MAPk and myosin light chain (MLC) phosphorylation, tight junction (TJ) protein expression and actin cytoskeletal organization were examined after stretch. Significant increases in epithelial permeability were observed only in 2CLP monolayers at the 12% ΔSA stretch level, and in both 2CLP and sham monolayers at the 25% ΔSA stretch level. Increased permeability in 2CLP monolayers was not associated with MAPk signaling or alterations in expression of TJ proteins. 2CLP monolayers had fewer actin stress fibers before stretch, a more robust stretch-induced actin redistribution, and reduced phosphorylated MLCK than sham monolayers. Jasplakinolide stabilization of the actin cytoskeleton in 2CLP monolayers prevented significant increases in permeability following 60 minutes of stretch to 12% ΔSA. We concluded that septic alveolar epithelial monolayers are more susceptible to stretch-induced barrier dysfunction than healthy monolayers due to actin reorganization

    Gene expression profile of AIDS-related Kaposi's sarcoma

    Get PDF
    BACKGROUND: Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. METHODS: In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. RESULTS: The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. CONCLUSION: The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

    Human Herpesvirus 8 (HHV8) Sequentially Shapes the NK Cell Repertoire during the Course of Asymptomatic Infection and Kaposi Sarcoma

    Get PDF
    The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8) has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi's sarcoma (KS). Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2) as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells
    • …
    corecore