39 research outputs found
Combinatorial Solutions to Normal Ordering of Bosons
We present a combinatorial method of constructing solutions to the normal
ordering of boson operators. Generalizations of standard combinatorial notions
- the Stirling and Bell numbers, Bell polynomials and Dobinski relations - lead
to calculational tools which allow to find explicitly normally ordered forms
for a large class of operator functions.Comment: Presented at 14th Int. Colloquium on Integrable Systems, Prague,
Czech Republic, 16-18 June 2005. 6 pages, 11 reference
Combinatorial Physics, Normal Order and Model Feynman Graphs
The general normal ordering problem for boson strings is a combinatorial
problem. In this note we restrict ourselves to single-mode boson monomials.
This problem leads to elegant generalisations of well-known combinatorial
numbers, such as Bell and Stirling numbers. We explicitly give the generating
functions for some classes of these numbers. Finally we show that a graphical
representation of these combinatorial numbers leads to sets of model field
theories, for which the graphs may be interpreted as Feynman diagrams
corresponding to the bosons of the theory. The generating functions are the
generators of the classes of Feynman diagrams.Comment: 9 pages, 4 figures. 12 references. Presented at the Symposium
'Symmetries in Science XIII', Bregenz, Austria, 200
Hopf Algebras in General and in Combinatorial Physics: a practical introduction
This tutorial is intended to give an accessible introduction to Hopf
algebras. The mathematical context is that of representation theory, and we
also illustrate the structures with examples taken from combinatorics and
quantum physics, showing that in this latter case the axioms of Hopf algebra
arise naturally. The text contains many exercises, some taken from physics,
aimed at expanding and exemplifying the concepts introduced
A product formula and combinatorial field theory
We treat the problem of normally ordering expressions involving the standard boson operators a, ay where [a; ay] = 1. We show that a simple product formula for formal power series | essentially an extension of the Taylor expansion | leads to a double exponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions | in essence, a combinatorial eld theory. We apply these techniques to some examples related to specic physical Hamiltonians
Heisenberg-Weyl algebra revisited: Combinatorics of words and paths
The Heisenberg-Weyl algebra, which underlies virtually all physical
representations of Quantum Theory, is considered from the combinatorial point
of view. We provide a concrete model of the algebra in terms of paths on a
lattice with some decomposition rules. We also discuss the rook problem on the
associated Ferrers board; this is related to the calculus in the normally
ordered basis. From this starting point we explore a combinatorial underpinning
of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and
applications.Comment: 5 pages, 3 figure
Dobiński relations and ordering of boson operators
We introduce a generalization of the Dobiński relation, through which we define a family of Bell-type numbers and polynomials. Such generalized Dobiński relations are coherent state matrix elements of expressions involving boson ladder operators. This may be used in order to obtain normally ordered forms of polynomials in creation and annihilation operators, both if the latter satisfy canonical and deformed commutation relations
Exponential Operators, Dobinski Relations and Summability
We investigate properties of exponential operators preserving the particle
number using combinatorial methods developed in order to solve the boson normal
ordering problem. In particular, we apply generalized Dobinski relations and
methods of multivariate Bell polynomials which enable us to understand the
meaning of perturbation-like expansions of exponential operators. Such
expansions, obtained as formal power series, are everywhere divergent but the
Pade summation method is shown to give results which very well agree with exact
solutions got for simplified quantum models of the one mode bosonic systems.Comment: Presented at XIIth Central European Workshop on Quantum Optics,
Bilkent University, Ankara, Turkey, 6-10 June 2005. 4 figures, 6 pages, 10
reference
Dobinski-type relations: Some properties and physical applications
We introduce a generalization of the Dobinski relation through which we
define a family of Bell-type numbers and polynomials. For all these sequences
we find the weight function of the moment problem and give their generating
functions. We provide a physical motivation of this extension in the context of
the boson normal ordering problem and its relation to an extension of the Kerr
Hamiltonian.Comment: 7 pages, 1 figur