51 research outputs found

    Clostridium perfringens epsilon toxin binds to membrane lipids and its cytotoxic action depends on sulfatide

    Get PDF
    Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology

    Regulated secretion is impaired in AtT-20 endocrine cells stably transfected with botulinum neurotoxin type A light chain

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) inhibits neurotransmitter release by specific cleavage of SNAP-25, a synaptosome-associated protein also expressed in the ACTH secretory cell line AtT-20. Expression of light chain BoNT/A (L-BoNT/A) gene transfected into AtT-20 cells resulted in a cleaved form of SNAP-25 indistinguishable from that generated by bona fide BoNT/A. L-BoNT/A-transfected cells showed no difference in replication rate, viability, or phenotype, compared with control AtT-20 cells. In contrast, L-BoNT/A-transfected cells could not be induced to secrete ACTH upon stimulation by 8-bromo-cAMP or KCl. In addition, alpha-latrotoxin induced ACTH release from control cells, but not from L-BoNT/A-transfected cells. These experiments suggest an important role for SNAP-25 in regulated secretion from AtT-20 cells and underline the usefulness of this cell system as a tool for the study of the molecular mechanism of peptide hormone secretion

    Block of transmitter release by botulinum C1 actiuon on syntaxin at the squid giant synapse

    Full text link
    Electrophysiological, morphological, and biochemical approaches were combined to study the effect of the presynaptic injection of the light chain of botulinum toxin C1 into the squid giant synapse. Presynaptic injection was accompanied by synaptic block that occurred progressively as the toxin filled the presynaptic terminal. Neither the presynaptic action potential nor the Ca2+ currents in the presynaptic terminal were affected by the toxin. Biochemical analysis of syntaxin moiety in squid indicates that the light chain of botulinum toxin C1 lyses syntaxin in vitro, suggesting that this was the mechanism responsible for synaptic block. Ultrastructure of the injected synapses demonstrates an enormous increase in the number of presynaptic vesicles, suggesting that the release rather than the docking of vesicles is affected by biochemical lysing of the syntaxin molecule

    Proteolysis of SNAP-25 by types E and A botulinal neurotoxins

    Get PDF
    Clostridial neurotoxins, tetanus toxin (TeTx) and the seven related but serologically distinct botulinal neurotoxins (BoNT/A to BoNT/G), are potent inhibitors of synaptic vesicle exocytosis in nerve endings. Recently it was reported that the light chains of clostridial neurotoxins act as zinc-dependent metalloproteases which specifically cleave synaptic target proteins such as synaptobrevin/VAMPs, HPC-1/syntaxin (BoNT/C1), and SNAP-25 (BoNT/A). We show here that BoNT/E, like BoNT/A, cleaves SNAP-25, as generated by in vitro translation or by expression in Escherichia coli. BoNT/E cleaves the Arg180-Ile181 bond. This site is different from that of BoNT/A, which cleaves SNAP-25 between the amino acid residues Gln197 and Arg198. These findings further support the view that clostridial neurotoxins have evolved from an ancestral protease recognizing the exocytotic fusion machinery of synaptic vesicles whereby individual toxins target different members of the membrane fusion complex

    Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization

    Get PDF
    The endocytic compartment of polarized cells is organized in basolateral and apical endosomes plus those endocytic structures specialized in recycling and transcytosis, which are still poorly characterized. The complexity of the various populations of endosomes has been demonstrated by the exquisite repertoire of endogenous proteins. In this study we examined the distribution of cellubrevin in the endocytic compartment of hepatocytes, since its intracellular location and function in polarized cells are largely unknown. Highly purified rat liver endosomes were isolated from estradiol-treated rats, and the early/sorting endosomal fraction was further subfractionated in a multistep sucrose density gradient, and studied. Analysis of dissected endosomal fractions showed that cellubrevin was located in early/sorting endosomes, with Rab4, annexins II and VI, and transferrin receptor, but in a specific subpopulation of these early endosomes with the same density range as pIgA and Raf-1. Interestingly, only in those isolated endosomal fractions, endosomes enriched in transcytotic structures (of livers loaded with IgA), the polymeric immunoglobulin receptor specifically co-immunoprecipitated with cellubrevin. In addition, confocal and immuno-electron microscopy identification of cellubrevin in tubular structures underneath the sinusoidal plasma membrane together with the re-organization of cellubrevin, in the endocytic compartment, after the IgA loading, strongly suggest the involvement of cellubrevin in the transcytosis of pIgA

    Bidirectional synaptic plasticity is driven by sex neurosteroids targeting estrogen and androgen receptors in hippocampal CA1 pyramidal neurons

    Get PDF
    Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERÎČ (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity

    Characterization of digital annular pulleys and their entheses: an ultrasonographic study with anatomical and histological correlations

    Full text link
    Objectives: Digital annular pulleys (DAP) are important anatomical structures for finger function. The anatomy, histology, and imaging assessment of DAP, particularly at the level of their entheses is still not clearly defined. The advent of high-frequency ultrasound (US) transducers opened new perspectives in evaluating sub-millimeter scale structures, such as pulleys, paving the way for their global assessment. The study aimed at characterizing DAP from an anatomical, histological, and US perspective, focusing on the detection and complete description of pulley entheses. Methods: US assessment and gross anatomy dissection were conducted on 20 cadaveric hands to study DAP thickness and structure including enthesis identification. The results of the US and anatomical measurements were correlated. DAP entheses identified by US were characterized via histological analysis. DAP in 20 healthy controls (HC) were detected and measured by US. The A1, A2, and A4 DAP entheses were assessed using a new dynamic maneuver to better evaluate those structures. Results: 1200 DAP (400 cadaveric, 800 HC) were analyzed. The cadaveric study demonstrated strong correlation between anatomical and US measurement of DAP (r = 0.96). At histological level, DAP entheses at the volar plate, sesamoid bones, or phalangeal ridges contained fibrous and fibrocartilaginous tissue. The US assessment of A1, A2, and A4 DAP in HC allowed the identification of 718/720 (99.73%) entheses. Conclusion: US is an effective tool to detect and study DAP. DAP entheses reveal both fibrous and fibrocartilaginous characteristics. A newly described maneuver to optimize DAP enthesis visualization enhances their detection by US

    Altered thiol chemistry in human amyotrophic lateral sclerosis-linked mutants of superoxide dismutase 1

    Get PDF
    Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS

    Combined intermittent hypobaric hypoxia and muscle electro-stimulation: a method to increase circulating progenitor cell concentration?

    Get PDF
    Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation. Nine healthy male subjects were subjected, as the active group (HME), to a protocol involving IHH plus ME. IHH exposure consisted of four, three-hour sessions at a barometric pressure of 540 hPa (equivalent to an altitude of 5000 m). These sessions took place on four consecutive days. ME was applied in two separate 20-minute periods during each IHH session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment, and then 24 h, 48 h, 4 days, 7 days and 14 days after the last day of hypoxic exposure. Four months later a control study was carried out involving seven of the original subjects (CG), who underwent the same protocol of blood samples but without receiving any special stimulus. In comparison with the CG the HME group showed only a non-significant increase in the number of CPC CD34+ cells on the fourth day after the combined IHH and ME treatment. CPC levels oscillated across the study period and provide no firm evidence to support an increased CPC count after IHH plus ME, although it is not possible to know if this slight increase observed is physiologically relevant. Further studies are required to understand CPC dynamics and the physiology and physiopathology of the hypoxic stimulus

    Circulating progenitor cells during exercise, muscle electro-stimulation and intermittent hypobaric hypoxia in patients with traumatic brain injury. A pilot study

    Get PDF
    BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear
    • 

    corecore