96 research outputs found

    Correlation between morphology and magnetic properties of electrochemically produced cobalt powder particles

    Get PDF
    Cobalt 3D powder particles were successfully prepared by galvanostatic electrodeposition. The electrodeposited cobalt powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and SQUID magnetometry. It was shown that the morphology, structure and magnetic properties of cobalt particles were closely associated and could be easily controlled by adjusting the electrodeposition process parameters. The morphology of cobalt powder particles was strongly affected by the hydrogen evolution reaction as a parallel reaction to cobalt electrodeposition. Depending on the applied current density, two types of powder particles were formed: dendrites at lower and spongy-like particles at higher current densities. Morphologies and structures of powder particles were correlated with their magnetic properties, and compared with those of the bulk cobalt. In comparison with the properties of bulk cobalt, the obtained 3D structutes exhibited a decreased saturation magnetization (M-S), but an enhanced coercivity (H-C), which was explained by their peculiar morphology

    Управление рисками профессиональных заболеваний на газотранспортном предприятии

    Get PDF
    Объектом исследования является система управления рисками профессиональных заболеваний на газотранспортном предприятии. В процессе исследования проводился анализ производственных процессов, оценка факторов рабочей среды и трудового процесса. В результате исследования были выявлены факторы трудового процесса, для расчета степени риска профессиональных заболеваний.The object of the study is the occupational disease risk management system at the gas transport enterprise. The study included an analysis of production processes, working environment and work process factors. As a result of the study, factors of the work process were identified to calculate the risk of occupational diseases

    Seasonality of nitrogen sources, cycling, and loading in a New England river discerned from nitrate isotope ratios

    Get PDF
    Coastal waters globally are increasingly impacted due to the anthropogenic loading of nitrogen (N) from the watershed. To assess dominant sources contributing to the eutrophication of the Little Narragansett Bay estuary in New England, we carried out an annual study of N loading from the Pawcatuck River. We conducted weekly monitoring of nutrients and nitrate (NO3-) isotope ratios (15N / 14N, 18O / 16O, and 17O / 16O) at the mouth of the river and from the larger of two wastewater treatment facilities (WWTFs) along the estuary, as well as seasonal along-river surveys. Our observations reveal a direct relationship between N loading and the magnitude of river discharge and a consequent seasonality to N loading into the estuary – rendering loading from the WWTFs and from an industrial site more important at lower river flows during warmer months, comprising ∼ 23 % and ∼ 18 % of N loading, respectively. Riverine nutrients derived predominantly from deeper groundwater and the industrial point source upriver in summer and from shallower groundwater and surface flow during colder months – wherein NO3- associated with deeper groundwater had higher 15N / 14N ratios than shallower groundwater. Corresponding NO3- 18O / 16O ratios were lower during the warm season, due to increased biological cycling in-river. Uncycled atmospheric NO3-, detected from its unique mass-independent NO3- 17O / 16O vs. 18O / 16O fractionation, accounted for &lt; 3 % of riverine NO3-, even at elevated discharge. Along-river, NO3- 15N / 14N ratios showed a correspondence to regional land use, increasing from agricultural and forested catchments to the more urbanized watershed downriver. The evolution of 18O / 16O isotope ratios along-river conformed to the notion of nutrient spiraling, reflecting the input of NO3- from the catchment and from in-river nitrification and its coincident removal by biological consumption. These findings stress the importance of considering seasonality of riverine N sources and loading to mitigate eutrophication in receiving estuaries. Our study further advances a conceptual framework that reconciles with the current theory of riverine nutrient cycling, from which to robustly interpret NO3- isotope ratios to constrain cycling and source partitioning in river systems.</p

    Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment

    Get PDF
    Background: The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings: The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage l induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg 2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance: Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon o

    Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost

    Get PDF
    Seamless cloning methods, such as sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the construction of protein expression plasmids. We here show that single-stranded gaps in double-stranded plasmids, which for example occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Conversely, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These data point out a critical factor for robust seamless cloning. Highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this method with two short insert-plasmid overlap regions, each counting only 15 nucleotides
    corecore