108 research outputs found

    Viral suppression of multiple escape mutants by de novo CD8+ T cell responses in a human immunodeficiency virus-1 Infected elite suppressor

    Get PDF
    Elite suppressors or controllers (ES) are HIV-1 infected patients who maintain undetectable viral loads without treatment. While HLA-B*57-positive ES are usually infected with virus that is unmutated at CTL epitopes, a single, dominant variant containing CTL escape mutations is typically seen in plasma during chronic infection. We describe an ES who developed seven distinct and rare escape variants at an HLA-B*57-restricted Gag epitope over a five year period. Interestingly, he developed proliferative, de novo CTL responses that suppressed replication of each of these variants. These responses, in combination with low viral fitness of each variant, may contribute to sustained elite control in this ES

    Maintenance of viral suppression in HIV-1–infected HLA-B*57+ elite suppressors despite CTL escape mutations

    Get PDF
    Rare human immunodeficiency virus 1–infected individuals, termed elite suppressors (ES), maintain plasma virus levels of <50 copies/ml and normal CD4 counts without therapy. The major histocompatibility complex class I allele group human histocompatibility leukocyte antigen (HLA)-B*57 is overrepresented in this population. Mutations in HLA-B*57–restricted epitopes have been observed in ES, but their significance has remained unclear. Here we investigate the extent and impact of cytotoxic T lymphocyte (CTL) escape mutations in HLA-B*57+ ES. We provide the first direct evidence that most ES experience chronic low level viremia. Sequencing revealed a striking discordance between the genotypes of plasma virus and archived provirus in resting CD4+ T cells. Mutations in HLA-B*57–restricted Gag epitopes were present in all viruses from plasma but were rare in proviruses, suggesting powerful selective pressure acting at these epitopes. Surprisingly, strong CD8+ T cell interferon-γ responses were detected against some mutant epitopes found in plasma virus, suggesting the development of de novo responses to viral variants. In some individuals, relative CD8+ T cell interleukin-2 responses showed better correlation with the selection observed in vivo. Thus, analysis of low level viremia reveals an unexpectedly high level of CTL escape mutations reflecting selective pressure acting at HLA-B*57–restricted epitopes in ES. Continued viral suppression probably reflects CTL responses against unmutated epitopes and residual or de novo responses against epitopes with escape mutations

    Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Get PDF
    Elite controllers or suppressors (ES) are HIV-1 infected patients who maintain viral loads of < 50 copies/ml without antiretroviral therapy. CD8+ T cells are thought to play a key role in the control of viral replication and exert selective pressure on gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host

    Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.</p> <p>Results</p> <p>miRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.</p> <p>Conclusions</p> <p>The intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.</p

    Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary

    Get PDF
    The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chainnull (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting
    corecore