505 research outputs found
The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept
Enhanced processing of aversive stimuli on embodied artificial limbs by the human amygdala
Body perception has been extensively investigated, with one particular focus being the integration of vision and touch within a neuronal body representation. Previous studies have implicated a distributed network comprising the extrastriate body area (EBA), posterior parietal cortex (PPC) and ventral premotor cortex (PMv) during illusory self-attribution of a rubber hand. Here, we set up an fMRI paradigm in virtual reality (VR) to study whether and how the self-attribution of (artificial) body parts is altered if these body parts are somehow threatened. Participants (N = 30) saw a spider (aversive stimulus) or a toy-car (neutral stimulus) moving along a 3D-rendered virtual forearm positioned like their real forearm, while tactile stimulation was applied on the real arm in the same (congruent) or opposite (incongruent) direction. We found that the PPC was more activated during congruent stimulation; higher visual areas and the anterior insula (aIns) showed increased activation during aversive stimulus presentation; and the amygdala was more strongly activated for aversive stimuli when there was stronger multisensory integration of body-related information (interaction of aversiveness and congruency). Together, these findings suggest an enhanced processing of aversive stimuli within the amygdala when they represent a bodily threat
The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses.
We compared the sensitivity of standard single-shot 2D echo planar imaging (EPI) to three advanced EPI sequences, i.e., 2D multi-echo EPI, 3D high resolution EPI and 3D dual-echo fast EPI in fixed effect and random effects group level fMRI analyses at 3T. The study focused on how well the variance reduction in fixed effect analyses achieved by advanced EPI sequences translates into increased sensitivity in the random effects group level analysis. The sensitivity was estimated in a functional MRI experiment of an emotional learning and a reward based learning tasks in a group of 24 volunteers. Each experiment was acquired with the four different sequences. The task-related response amplitude, contrast level and respective t-value were proxies for the functional sensitivity across the brain. All three advanced EPI methods increased the sensitivity in the fixed effects analyses, but standard single-shot 2D EPI provided a comparable performance in random effects group analysis when whole brain coverage and moderate resolution are required. In this experiment inter-subject variability determined the sensitivity of the random effects analysis for most brain regions, making the impact of EPI pulse sequence improvements less relevant or even negligible for random effects analyses. An exception concerns the optimization of EPI reducing susceptibility-related signal loss that translates into an enhanced sensitivity e.g. in the orbitofrontal cortex for multi-echo EPI. Thus, future optimization strategies may best aim at reducing inter-subject variability for higher sensitivity in standard fMRI group studies at moderate spatial resolution
Two-parameter neutrino mass matrices with two texture zeros
We reanalyse Majorana-neutrino mass matrices M_nu with two texture zeros, by
searching for viable hybrid textures in which the non-zero matrix elements of
M_nu have simple ratios. Referring to the classification scheme of Frampton,
Glashow and Marfatia, we find that the mass matrix denoted by A1 allows the
ratios (M_nu)_{mu mu} : (Mnu)_{tau tau} = 1:1 and (M_nu)_{e tau} : (Mnu)_{mu
tau} = 1:2. There are analogous ratios for texture A2. With these two hybrid
textures, one obtains, for instance, good agreement with the data if one
computes the three mixing angles in terms of the experimentally determined
mass-squared differences Delta m^2_21 and Delta m^2_31. We could not find
viable hybrid textures based on mass matrices different from those of cases A1
and A2.Comment: 10 pages, no figures, minor changes, some references adde
The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI
Contralesional dorsal premotor cortex (cPMd) may support residual motor function following stroke. We performed two complementary experiments to explore how cPMd might perform this role in a group of chronic human stroke patients. First, we used paired-coil transcranial magnetic stimulation (TMS) to establish the physiological influence of cPMd on ipsilesional primary motor cortex (iM1) at rest. We found that this influence became less inhibitory/more facilitatory in patients with greater clinical impairment. Second, we applied TMS over cPMd during functional magnetic resonance imaging (fMRI) in these patients to examine the causal influence of cPMd TMS on the whole network of surviving cortical motor areas in either hemisphere and whether these influences changed during affected hand movement. We confirmed that hand grip-related activation in cPMd was greater in more impaired patients. Furthermore, the peak ipsilesional sensorimotor cortex activity shifted posteriorly in more impaired patients. Critical new findings were that concurrent TMS-fMRI results correlated with the level of both clinical impairment and neurophysiological impairment (i.e., less inhibitory/more facilitatory cPMd-iM1 measure at rest as assessed with paired-coil TMS). Specifically, greater clinical and neurophysiological impairment was associated with a stronger facilitatory influence of cPMd TMS on blood oxygenation level-dependent signal in posterior parts of ipsilesional sensorimotor cortex during hand grip, corresponding to the posteriorly shifted sensorimotor activity seen in more impaired patients. cPMd TMS was not found to influence activity in other brain regions in either hemisphere. This state-dependent influence on ipsilesional sensorimotor regions may provide a mechanism by which cPMd supports recovered function after stroke
The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI.
Contralesional dorsal premotor cortex (cPMd) may support residual motor function following stroke. We performed two complementary experiments to explore how cPMd might perform this role in a group of chronic human stroke patients. First, we used paired-coil transcranial magnetic stimulation (TMS) to establish the physiological influence of cPMd on ipsilesional primary motor cortex (iM1) at rest. We found that this influence became less inhibitory/more facilitatory in patients with greater clinical impairment. Second, we applied TMS over cPMd during functional magnetic resonance imaging (fMRI) in these patients to examine the causal influence of cPMd TMS on the whole network of surviving cortical motor areas in either hemisphere and whether these influences changed during affected hand movement. We confirmed that hand grip-related activation in cPMd was greater in more impaired patients. Furthermore, the peak ipsilesional sensorimotor cortex activity shifted posteriorly in more impaired patients. Critical new findings were that concurrent TMS-fMRI results correlated with the level of both clinical impairment and neurophysiological impairment (i.e., less inhibitory/more facilitatory cPMd-iM1 measure at rest as assessed with paired-coil TMS). Specifically, greater clinical and neurophysiological impairment was associated with a stronger facilitatory influence of cPMd TMS on blood oxygenation level-dependent signal in posterior parts of ipsilesional sensorimotor cortex during hand grip, corresponding to the posteriorly shifted sensorimotor activity seen in more impaired patients. cPMd TMS was not found to influence activity in other brain regions in either hemisphere. This state-dependent influence on ipsilesional sensorimotor regions may provide a mechanism by which cPMd supports recovered function after stroke
A zone melting device for the in situ observation of directional solidification using high-energy synchrotron x rays editors-pick
Directional solidification (DS) is an established manufacturing process to produce high-performance components from metallic materials with optimized properties. Materials for demanding high-temperature applications, for instance in the energy generation and aircraft engine technology, can only be successfully produced using methods such as directional solidification. It has been applied on an industrial scale for a considerable amount of time, but advancing this method beyond the current applications is still challenging and almost exclusively limited to post-process characterization of the developed microstructures. For a knowledge-based advancement and a contribution to material innovation, in situ studies of the DS process are crucial using realistic sample sizes to ensure scalability of the results to industrial sizes. Therefore, a specially designed Flexible Directional Solidification (FlexiDS) device was developed for use at the P07 High Energy Materials Science beamline at PETRA III (Deutsches Elektronen–Synchrotron, Hamburg, Germany). In general, the process conditions of the crucible-free, inductively heated FlexiDS device can be varied from 6 mm/h to 12 000 mm/h (vertical withdrawal rate) and from 0 rpm to 35 rpm (axial sample rotation). Moreover, different atmospheres such as Ar, N2, and vacuum can be used during operation. The device is designed for maximum operation temperatures of 2200 °C. This unique device allows in situ examination of the directional solidification process and subsequent solid-state reactions by x-ray diffraction in the transmission mode. Within this project, different structural intermetallic alloys with liquidus temperatures up to 2000 °C were studied in terms of liquid–solid regions, transformations, and decompositions, with varying process conditions
Recommended from our members
Pain hypersensitivity in juvenile idiopathic arthritis: a quantitative sensory testing study
Background: Juvenile Idiopathic Arthritis (JIA) is the most common cause of non-infectious joint inflammation in children. Synovial inflammation results in pain, swelling and stiffness. Animal and adult human studies indicate that localized joint-associated inflammation may produce generalized changes in pain sensitivity. The aim was to characterize pain sensitivity in children with JIA to mechanical and thermal stimulus modalities using quantitative sensory testing (QST) at an affected inflamed joint, and compare to children in clinical remission. Generalized hypersensitivity was evaluated by comparing QST measures at the thenar eminence between JIA and healthy control children. Methods: 60 children aged 7–17 years with JIA participated. QST assessed sensory detection threshold and pain threshold at two sites: (1) affected joint (clinically active or inactive), (2) contralateral thenar eminence. Joint site included finger, wrist, knee and ankle. Clinical status was measured using objective and subjective markers of disease severity. Questionnaires assessed pain intensity and frequency, functional disability, anxiety, pain catastrophization and fatigue. QST data collected from joints were compared within JIA patients: active vs. inactive inflammation; and data from the contralateral thenar eminence were compared between JIA and healthy control cohorts in Europe [EU, (n = 151)] and the US (n = 92). Statistical analyses were performed using Kruskal-Wallis with Dunn’s post-hoc comparison, Mann-Whitney or Fisher’s exact test, where appropriate. Results: Overall, children with JIA reported low pain scores and low degrees of functional disability. Sensory detection thresholds and pain thresholds were similar in “active” compared to “inactive” joints. Despite this, children with JIA had generalized hypersensitivity at the thenar eminence when compared to healthy children for pressure (vs. EU p < 0.001), light touch (vs. EU p < 0.001), cold (vs EU, p < 0.01; vs US, p < 0.001) and heat pain (vs EU, p < 0.05; vs US p < 0.001). Conclusions: JIA is associated with increased sensitivity to painful mechanical and thermal stimuli, even in absence of pain reports, or markers of disease activity. Future research investigating mechanisms underlying pain hypersensitivity in JIA is warranted; this will in turn guide pharmacologic and non-pharmacologic interventions to prevent or reverse these processes. Electronic supplementary material The online version of this article (doi:10.1186/1546-0096-12-39) contains supplementary material, which is available to authorized users
Action-Dependent Processing of Touch in the Human Parietal Operculum and Posterior Insula
Somatosensory input generated by one’s actions (i.e., self-initiated body movements) is generally attenuated. Conversely,
externally caused somatosensory input is enhanced, for example, during active touch and the haptic exploration of objects.
Here, we used functional magnetic resonance imaging (fMRI) to ask how the brain accomplishes this delicate weighting of
self-generated versus externally caused somatosensory components. Finger movements were either self-generated by our
participants or induced by functional electrical stimulation (FES) of the same muscles. During half of the trials,
electrotactile impulses were administered when the (actively or passively) moving finger reached a predefined f lexion
threshold. fMRI revealed an interaction effect in the contralateral posterior insular cortex (pIC), which responded more
strongly to touch during self-generated than during FES-induced movements. A network analysis via dynamic causal
modeling revealed that connectivity from the secondary somatosensory cortex via the pIC to the supplementary motor area
was generally attenuated during self-generated relative to FES-induced movements—yet specifically enhanced by touch
received during self-generated, but not FES-induced movements. Together, these results suggest a crucial role of the
parietal operculum and the posterior insula in differentiating self-generated from externally caused somatosensory
information received from one’s moving limb
- …