415 research outputs found
Rare K and B Decays in a Warped Extra Dimension with Custodial Protection
We present a complete study of rare K and B meson decays in a warped extra
dimensional model with a custodial protection of (both diagonal and
non-diagonal) Z d_L^i \bar d_L^j couplings, including K^+ -> pi^+ nu anti-nu,
K_L -> pi^0 nu anti-nu, K_L -> pi^0 l^+ l^-, K_L -> mu^+ mu^-, B_{s,d} -> mu^+
mu^-, B -> K nu anti-nu, B -> K^* nu anti-nu and B -> X_{s,d} nu anti-nu. In
this model in addition to Standard Model one loop contributions these processes
receive tree level contributions from the Z boson and the new heavy electroweak
gauge bosons. We analyse all these contributions that turn out to be dominated
by tree level Z boson exchanges governed by right-handed couplings to down-type
quarks. Imposing all existing constraints from Delta F=2 transitions analysed
by us recently and fitting all quark masses and CKM mixing parameters we find
that a number of branching ratios for rare K decays can differ significantly
from the SM predictions, while the corresponding effects in rare B decays are
modest, dominantly due to the custodial protection being more effective in B
decays than in K decays. In order to reduce the parameter dependence we study
correlations between various observables within the K system, within the B
system and in particular between K and B systems, and also between Delta F=2
and Delta F=1 observables. These correlations allow for a clear distinction
between this new physics scenario and models with minimal flavour violation or
the Littlest Higgs Model with T-parity, and could give an opportunity to future
experiments to confirm or rule out the model. We show how our results would
change if the custodial protection of Z d_L^i bar d^j_L couplings was absent.
In the case of rare B decays the modifications are spectacular.Comment: 50 pages, 17 figures. v2: minor clarifying comments and references
added. v3: few clarifying comments added, matches published versio
Symmetries and Asymmetries of B -> K* mu+ mu- Decays in the Standard Model and Beyond
The rare decay B -> K* (-> K pi) mu+ mu- is regarded as one of the crucial
channels for B physics as the polarization of the K* allows a precise angular
reconstruction resulting in many observables that offer new important tests of
the Standard Model and its extensions. These angular observables can be
expressed in terms of CP-conserving and CP-violating quantities which we study
in terms of the full form factors calculated from QCD sum rules on the
light-cone, including QCD factorization corrections. We investigate all
observables in the context of the Standard Model and various New Physics
models, in particular the Littlest Higgs model with T-parity and various MSSM
scenarios, identifying those observables with small to moderate dependence on
hadronic quantities and large impact of New Physics. One important result of
our studies is that new CP-violating phases will produce clean signals in
CP-violating asymmetries. We also identify a number of correlations between
various observables which will allow a clear distinction between different New
Physics scenarios.Comment: 56 pages, 18 figures, 14 tables. v5: Missing factor in eqs. (3.31-32)
and fig. 6 corrected. Minor misprints in eq. (2.10) and table A corrected.
Conclusions unchange
The Physics of Heavy Flavours at SuperB
This is a review of the SuperB project, covering the accelerator, detector,
and highlights of the broad physics programme. SuperB is a flavour factory
capable of performing precision measurements and searches for rare and
forbidden decays of , , and
particles. These results can be used to test fundamental symmetries and
expectations of the Standard Model, and to constrain many different
hypothesised types of new physics. In some cases these measurements can be used
to place constraints on the existence of light dark matter and light Higgs
particles with masses below . The potential impact of the
measurements that will be made by SuperB on the field of high energy physics is
also discussed in the context of data taken at both high energy in the region
around the \Upsilon({\mathrm{4S}})$, and near charm threshold.Comment: 49 pages, topical review submitted to J. Phys
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
Muon to electron conversion in the Littlest Higgs model with T-parity
Little Higgs models provide a natural explanation of the little hierarchy
between the electroweak scale and a few TeV scale, where new physics is
expected. Under the same inspiring naturalness arguments, this work completes a
previous study on lepton flavor-changing processes in the Littlest Higgs model
with T-parity exploring the channel that will eventually turn out to be the
most sensitive, \mu-e conversion in nuclei. All one-loop contributions are
carefully taken into account, results for the most relevant nuclei are provided
and a discussion of the influence of the quark mixing is included. The results
for the Ti nucleus are in good agreement with earlier work by Blanke et al.,
where a degenerate mirror quark sector was assumed. The conclusion is that,
although this particular model reduces the tension with electroweak precision
tests, if the restrictions on the parameter space derived from lepton flavor
violation are taken seriously, the degree of fine tuning necessary to meet
these constraints also disfavors this model.Comment: 26 pages, 7 figures, 4 tables; discussion improved, results
unchanged, one reference added, version to appear in JHE
Flavor Violating Higgs Decays
We study a class of nonstandard interactions of the newly discovered 125 GeV
Higgs-like resonance that are especially interesting probes of new physics:
flavor violating Higgs couplings to leptons and quarks. These interaction can
arise in many frameworks of new physics at the electroweak scale such as two
Higgs doublet models, extra dimensions, or models of compositeness. We rederive
constraints on flavor violating Higgs couplings using data on rare decays,
electric and magnetic dipole moments, and meson oscillations. We confirm that
flavor violating Higgs boson decays to leptons can be sizeable with, e.g., h ->
tau mu and h -> tau e branching ratios of order 10% perfectly allowed by low
energy constraints. We estimate the current LHC limits on h -> tau mu and h ->
tau e decays by recasting existing searches for the SM Higgs in the tau-tau
channel and find that these bounds are already stronger than those from rare
tau decays. We also show that these limits can be improved significantly with
dedicated searches and we outline a possible search strategy. Flavor violating
Higgs decays therefore present an opportunity for discovery of new physics
which in some cases may be easier to access experimentally than flavor
conserving deviations from the Standard Model Higgs framework.Comment: 39 pages, 12 figures, 3 tables; v2: Improved referencing, updated mu
-> 3e bounds to include large loop contributions, corrected single top
constraints; conclusions unchanged; matches version to be published in JHEP;
v3: included 2-loop contributions in mu -> e conversion, improved discussion
of tau -> 3 mu and of EDM constraints on FV top-Higgs couplings; conclusions
unchange
New Physics in b -> s mu+ mu-: CP-Conserving Observables
We perform a comprehensive study of the impact of new-physics operators with
different Lorentz structures on decays involving the b -> s mu+ mu- transition.
We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar
(SP) and tensor (T) interactions on the differential branching ratios and
forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+
mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-,
taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further
explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the
longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures
that would significantly impact these observables, providing analytical
arguments in terms of the contributions from the individual operators and their
interference terms. In particular, we show that while the new VA operators can
significantly enhance most of the asymmetries beyond the Standard Model
predictions, the SP and T operators can do this only for A_{FB} in Bdbar ->
Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K*
mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a
missing term in I3LT in Eq. (D.16). Numerical analysis unchange
Techniques for Arbuscular Mycorrhiza Inoculum Reduction
It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems.
There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities.
Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages.
Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity.
An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects.
Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
New-physics contributions to the forward-backward asymmetry in B -> K* mu+ mu-
We study the forward-backward asymmetry (AFB) and the differential branching
ratio (DBR) in B -> K* mu+ mu- in the presence of new physics (NP) with
different Lorentz structures. We consider NP contributions from vector-axial
vector (VA), scalar-pseudoscalar (SP), and tensor (T) operators, as well as
their combinations. We calculate the effects of these new Lorentz structures in
the low-q^2 and high-q^2 regions, and explain their features through analytic
approximations. We find two mechanisms that can give a significant deviation
from the standard-model predictions, in the direction indicated by the recent
measurement of AFB by the Belle experiment. They involve the addition of the
following NP operators: (i) VA, or (ii) a combination of SP and T (slightly
better than T alone). These two mechanisms can be distinguished through
measurements of DBR in B -> K* mu+ mu- and AFB in B -> K mu+ mu-.Comment: 33 pages, revtex, 9 figures. Paper originally submitted with the
wrong figures. This is corrected in the replacement. An incorrect factor of 2
found in a formula. This is corrected and figures modified. Conclusions
unchanged. Typos correcte
- …
