9,540 research outputs found

    Electrostatic potential distribution of the sunlit lunar surface

    Get PDF
    Electrostatic potential distribution on sunlit lunar surfac

    Properties of lift-off structured high Tc microbridges

    Get PDF
    Microbridges and DC SQUIDs (superconducting quantum interference devices) were fabricated, using a lift-off technique, from RF sputtered YBaCuO films on MgO single-crystal substrates. Microwave measurements at 9 GHz on microbridges and the magnetic-field dependence of their critical current reveal wide bridge behaviour up to temperatures near the maximum operating temperature of the bridge. Mostly, a linear dependence of the critical current on the temperature is found, which is connected with high intrinsic 1/f noise if the bridge is constant-current-biased slightly above the critical current. In some bridges and DC SQUIDs, regimes with a temperature dependence proportional to (1-T/Tc)1.5 are found. In this case the 1/f noise level is much smaller and SQUID modulation can be followed to about 65

    Sampling and handling of desert soils

    Get PDF
    Sampling and handling of desert soils - area site, transportation, processing, and storag

    Fabrications aspects of microwave devices, including ramp-type high-Tc Josephson junctions and log-periodic antenna's

    Get PDF
    We describe the development of high-Tc Josephson junction devices for applications at millimeter wave frequencies. These devices consist of ramp type YBCO/PBCO/YBCO Josephson junctions that are equipped with a noble metal log-periodic antenna. Growth conditions of all layers, as well as etching, cleaning and annealing procedures are being optimized, to guarantee well-defined device properties. Lowering the deposition temperature of the thick PBCO layer strongly improved its isolating properties, which is of extreme importance for good reproducability of junction fabrication. Special attention is being focused on the optimization of the contact of noble metal to YBCO as well its adhesion to the substrate. Best results are obtained using sputtered gold contacts, after a soft Ar ion sputter clean treatment of the damaged YBCO surface, followed by an anneal procedure

    Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding

    Get PDF
    A three-dimensional large-sliding contact model coupled with strain-induced phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb and plastic friction are combined and take into account variable parameters due to PT. Results are obtained for weaker, equal-strength, and stronger high pressure phases, and for three values of the kinetic coefficient in a strain-controlled kinetic equation and friction coefficient. All drawbacks typical of problem with cohesion are overcome, including eliminating mesh-dependent shear band and artificial plastic zones. Contact sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. Larger plastic strain and increased pressure in the central region lead to intensification of PT. However, the effect of the reduction in the friction coefficient on PT kinetics is nonmonotonous. Sliding increases away from the center and with growing rotation and is weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a sample, and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low pressure region is revealed. Possible misinterpretation of experimental PT pressure is found. Obtained results represent essential progress toward understanding of strain-induced PTs under compression and shear in RDAC and may be used for designing experiments for synthesis of new high pressure phases and reduction in PT pressure for known phases, as well as for determination of PT kinetics from experiments

    Experimental demonstration of a W-band gyroklystron amplifier

    Get PDF
    The experimental demonstration of a four cavity W-band (93 GHz) gyroklystron amplifier is reported. The gyroklystron has produced 67 kW peak output power and 28% efficiency in the TE011 mode using a 55 kV, 4.3 A electron beam. The full width at half maximum instantaneous bandwidth is greater than 460 MHz, a significant increase over the bandwidth demonstrated in previous W-band gyroklystron amplifier experiments. The amplifier is unconditionally stable at this operating point. Experimental results are in good agreement with theoretical predictions

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Thermogravimetry and neutron thermodiffractometry studies of the H-YBa2Cu3O7 system.

    Get PDF
    The high Tc superconducting oxide YBa2Cu3O7¿x reacts with hydrogen gas. Thermogravimetric, X-ray and neutron scattering experiments allow us to propose a two-step type of hydrogen bonding. Firstly, a few hydrogen atoms fill some oxygen vacancies and may favourably modify the electron state, giving rise to a slight increase in the critical temperature. Secondly, after a prolonged heating period, the collapse of the YBa2Cu3O7¿x type framework and of superconductivity were observed, and a new, highly hydrogenated material appeared
    corecore