21 research outputs found

    Efferent Pathways in Sodium Overload-Induced Renal Vasodilation in Rats

    Get PDF
    Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. the present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g) were anesthetized with sodium thiopental (40 mg. kg(-1), i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. in anesthetized rats (n = 6), OT infusion (0.03 mu g . kg(-1), i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml . kg(-1) b.wt., i.v.) was infused over 60 s. in sham rats (n = 6), hypertonic saline induced renal vasodilation. the OXTR antagonist (AT; atosiban, 40 mu g . kg(-1) . h(-1), i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. the combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Goias, Ctr Neurosci & Cardiovasc Physiol, Inst Biol Sci, Dept Physiol Sci, Goiania, Go, BrazilUniv Fed Uberlandia, Fac Phys Educ, Inst Biol Sci, BR-38400 Uberlandia, MG, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniv Fed Goias, Inst Biol Sci, Mol Biol Lab, Goiania, Go, BrazilUniv Fed Goias, Inst Biol Sci, Dept Biochem & Mol Biol, Goiania, Go, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilFundacao de Amparo a Pesquisa do Estado de Goias (FAPEG): 2012/0055431086Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG): 2009/10267000352CNPq: 477832/2010-5CNPq: 483411/2012-4Web of Scienc

    Vasopressin-dependent pressor responses induced by hypertonic saline load in rats with commissural NTS lesions

    No full text
    UNESP, Sch Dent, Dept Physiol & Pathol, BR-14801 Araraquara, BrazilUNIFESP EPM, Dept Physiol, Sao Paulo, BrazilUNIFESP EPM, Dept Physiol, Sao Paulo, BrazilWeb of Scienc

    Involvement of the intermediate nucleus of the lateral septal area on angiotensin II-induced dipsogenic and pressor responses

    No full text
    Previous studies have shown that different parts of the septal area may have opposite roles in the control of water intake and cardiovascular responses. In the present study we investigated the effects of electrolytic lesions of the intermediate nucleus of the lateral septal area (LSI) on cardiovascular and dipsogenic responses to intracerebroventricular (icv) angiotensin II (ANG II) and water intake induced by other different stimuli. Male Holtzman rats (280-320 g of body weight, n = 6-16/group) with sham or electrolytic lesions of the LSI and a stainless steel cannula implanted into the lateral ventricle (IV) were used. The LSI lesions did not affect body weight or daily water intake. However, LSI lesions reduced water intake and pressor responses induced by icv ANG II (4.10(-2) nmol). The LSI lesions also slightly reduced water intake induced by 24 h of water deprivation or isoproterenol (30 mu g/kg) subcutaneously, but did not affect water intake induced by intragastric 2 ml of 2 M NaCl load. The results suggest that LSI is part of the forebrain circuitry activated by ANG II to produce pressor and dipsogenic responses. However, the same nucleus is not involved in the dipsogenic responses to central osmoreceptor activation. (c) 2009 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Catecholaminergic neurons in the comissural region of the nucleus of the solitary tract modulate hyperosmolality-induced responses

    No full text
    Noradrenergic A2 neurons of the nucleus of the solitary tract (NTS) have been suggested to contribute to body fluid homeostasis and cardiovascular regulation. In the present study, we investigated the effects of lesions of A2 neurons of the commissural NTS (cNTS) on the c-Fos expression in neurons of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, arterial pressure, water intake, and urinary excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats (280-320 g) received an injection of anti-dopamine-β-hydroxylase-saporin (12.6 ng/60 nl; cNTS/A2-lesion, n = 28) or immunoglobulin G (IgG)-saporin (12.6 ng/60 nl; sham, n = 24) into the cNTS. The cNTS/A2 lesions increased the number of neurons expressing c-Fos in the magnocellular PVN in rats treated with hypertonic NaCl (90 ± 13, vs. sham: 47 ± 20; n = 4), without changing the number of neurons expressing c-Fos in the parvocellular PVN or in the SON. Contrary to sham rats, intragastric 2 M NaCl also increased arterial pressure in cNTS/A2-lesioned rats (16 ± 3, vs. sham: 2 ± 2 mmHg 60 min after the intragastric load; n = 9), an effect blocked by the pretreatment with the vasopressin antagonist Manning compound (0 ± 3 mmHg; n = 10). In addition, cNTS/A2 lesions enhanced hyperosmolality-induced water intake (10.5 ± 1.4, vs. sham: 7.7 ± 0.8 ml/60 min; n = 8-10), without changing renal responses to hyperosmolality. The results suggest that inhibitory mechanisms dependent on cNTS/A2 neurons reduce water intake and vasopressin-dependent pressor response to an acute increase in plasma osmolality.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Inhibitory mechanism of the nucleus of the solitary tract involved in the control of cardiovascular, dipsogenic, hormonal, and renal responses to hyperosmolality

    No full text
    The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality. © 2013 the American Physiological Society
    corecore