30 research outputs found

    Complexity of the microglial activation pathways that drive innate host responses during lethal alphavirus encephalitis in mice

    Get PDF
    Microglia express multiple TLRs (Toll-like receptors) and provide important host defence against viruses that invade the CNS (central nervous system). Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors) and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus) and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon) to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum) protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections

    Relationship Between Preexisting Cardiovascular Disease and Death and Cardiovascular Outcomes in Critically Ill Patients With COVID-19

    Get PDF
    BACKGROUND: Preexisting cardiovascular disease (CVD) is perceived as a risk factor for poor outcomes in patients with COVID-19. We sought to determine whether CVD is associated with in-hospital death and cardiovascular events in critically ill patients with COVID-19. METHODS: This study used data from a multicenter cohort of adults with laboratory-confirmed COVID-19 admitted to intensive care units at 68 centers across the United States from March 1 to July 1, 2020. The primary exposure was CVD, defined as preexisting coronary artery disease, congestive heart failure, or atrial fibrillation/flutter. Myocardial injury on intensive care unit admission defined as a troponin I or T level above the 99th percentile upper reference limit of normal was a secondary exposure. The primary outcome was 28-day in-hospital mortality. Secondary outcomes included cardiovascular events (cardiac arrest, new-onset arrhythmias, new-onset heart failure, myocarditis, pericarditis, or stroke) within 14 days. RESULTS: Among 5133 patients (3231 male [62.9%]; mean age 61 years [SD, 15]), 1174 (22.9%) had preexisting CVD. A total of 1178 (34.6%) died, and 920 (17.9%) had a cardiovascular event. After adjusting for age, sex, race, body mass index, history of smoking, and comorbidities, preexisting CVD was associated with a 1.15 (95% CI, 0.98-1.34) higher odds of death. No independent association was observed between preexisting CVD and cardiovascular events. Myocardial injury on intensive care unit admission was associated with higher odds of death (adjusted odds ratio, 1.93 [95% CI, 1.61-2.31]) and cardiovascular events (adjusted odds ratio, 1.82 [95% CI, 1.47-2.24]), regardless of the presence of CVD. CONCLUSIONS: CVD risk factors, rather than CVD itself, were the major contributors to outcomes in critically ill patients with COVID-19. The occurrence of myocardial injury, regardless of CVD, and its association with outcomes suggests it is likely due to multiorgan injury related to acute inflammation rather than exacerbation of preexisting CVD. REGISTRATION: NCT04343898; https://clinicaltrials.gov/ct2/show/NCT04343898

    Additional file 2: Figure S2. of Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice

    No full text
    Representative Western blots show induction of the Nox subunits, gp91 and p47, in both the brain and spinal cord over the course of acute NSV infection relative to the expression of a β-actin loading control in each tissue sample (TIF 492 KB). (TIF 424 kb

    Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    Get PDF
    The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC) and SPARC-like 1 (SPARCL1), are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE) in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal grey matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal grey matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis

    Circulating osteopontin levels and outcomes in patients hospitalized for COVID-19

    No full text
    Background: Severe coronavirus disease 2019 (COVID-19) is the result of a hyper-inflammatory reaction to the severe acute respiratory syndrome coronavirus 2. The biomarkers of inflammation have been used to risk-stratify patients with COVID-19. Osteopontin (OPN) is an integrin-binding glyco-phosphoprotein involved in the modulation of leukocyte activation; its levels are associated with worse outcomes in patients with sepsis. Whether OPN levels predict outcomes in COVID-19 is unknown. Methods: We measured OPN levels in serum of 341 hospitalized COVID-19 patients collected within 48 h from admission. We characterized the determinants of OPN levels and examined their association with in-hospital outcomes; notably death, need for mechanical ventilation, and need for renal replacement therapy (RRT) and as a composite outcome. The risk discrimination ability of OPN was compared with other inflammatory biomarkers. Results: Patients with COVID-19 (mean age 60, 61.9% male, 27.0% blacks) had significantly higher levels of serum OPN compared to healthy volunteers (96.63 vs. 16.56 ng/mL, p < 0.001). Overall, 104 patients required mechanical ventilation, 35 needed dialysis, and 53 died during their hospitalization. In multivariable analyses, OPN levels ≥140.66 ng/mL (third tertile) were associated with a 3.5 × (95%CI 1.44–8.27) increase in the odds of death, and 4.9 × (95%CI 2.48–9.80) increase in the odds of requiring mechanical ventilation. There was no association between OPN and need for RRT. Finally, OPN levels in the upper tertile turned out as an independent prognostic factor of event-free survival with respect to the composite endpoint. Conclusion: Higher OPN levels are associated with increased odds of death and mechanical ventilation in patients with COVID-19, however, their utility in triage is questionable

    Circulating Osteopontin Levels and Outcomes in Patients Hospitalized for COVID-19

    No full text
    Background: Severe coronavirus disease 2019 (COVID-19) is the result of a hyper-inflammatory reaction to the severe acute respiratory syndrome coronavirus 2. The biomarkers of inflammation have been used to risk-stratify patients with COVID-19. Osteopontin (OPN) is an integrin-binding glyco-phosphoprotein involved in the modulation of leukocyte activation; its levels are associated with worse outcomes in patients with sepsis. Whether OPN levels predict outcomes in COVID-19 is unknown. Methods: We measured OPN levels in serum of 341 hospitalized COVID-19 patients collected within 48 h from admission. We characterized the determinants of OPN levels and examined their association with in-hospital outcomes; notably death, need for mechanical ventilation, and need for renal replacement therapy (RRT) and as a composite outcome. The risk discrimination ability of OPN was compared with other inflammatory biomarkers. Results: Patients with COVID-19 (mean age 60, 61.9% male, 27.0% blacks) had significantly higher levels of serum OPN compared to healthy volunteers (96.63 vs. 16.56 ng/mL, p &lt; 0.001). Overall, 104 patients required mechanical ventilation, 35 needed dialysis, and 53 died during their hospitalization. In multivariable analyses, OPN levels &gt;= 140.66 ng/mL (third tertile) were associated with a 3.5 x (95%CI 1.44-8.27) increase in the odds of death, and 4.9 x (95%CI 2.48-9.80) increase in the odds of requiring mechanical ventilation. There was no association between OPN and need for RRT. Finally, OPN levels in the upper tertile turned out as an independent prognostic factor of event-free survival with respect to the composite endpoint. Conclusion: Higher OPN levels are associated with increased odds of death and mechanical ventilation in patients with COVID-19, however, their utility in triage is questionable
    corecore