15,022 research outputs found

    The identification of gamma ray induced EAS

    Get PDF
    Some of the penetrating particles in gamma-induced EAS from Cygnus X-3 observed by a single layer of flash-bulbs under 880 g cm/2 concrete, may be punched through photons rather than muons. An analysis of the shielded flash-tube response detected from EAS is presented. The penetration of the electro-magnetic component through 20 cm of Pb is observed at core distances approx. 10 m

    Average features of the muon component of EAS or = 10(17) eV

    Get PDF
    Three 10 sq m liquid scintillators were situated at approximately 0 m, 150 m and 250 m from the center of the Haverah Park array. The detectors were shielded by lead/barytes giving muon detection thresholds of 317 MeV, 431 MeV and 488 MeV respectively. During part of the operational period the 431 MeV threshold was lowered to 313 MeV for comparison purposes. For risetime measurement fast phototubes were used and the 10% to 70% amplitude time interval was parameterized by T sub 70. A muon lateral density distribution of the form rho mu (R theta) = krho(500)0.94 1/R(1 + R/490)-eta has been fitted to the data for 120 m R 600 m and 0.27 (500) 2.55. The shower size parameter (500) is the water Cerenkov response at 500 m from the core of the extensive air showers (EAS) and is relatable to the primary energy. The results show general consistency

    Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella

    Get PDF
    Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 (IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-1) and to compare post-vaccination immune responses of chickens to those stimulated by live oocyst infection. Following challenge, parasite replication measured using quantitative PCR was significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or recombinant thioredoxin mock-immunised controls, p < 0.05), or the birds vaccinated by infection with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both p < 0.05)

    Muon fluctuation studies of EAS 10(17) eV

    Get PDF
    Fluctuation studies need to compare a parameter which is sensitive to longitudinal fluctuations against a parameter which is insensitive. Cascade calculations indicate that the shower size parameter at Haverah Park, rho (500), and the muon density are insensitive while parameters that significantly reflect the longitudinal development of a particular extensive air shower (EAS) include the muon/water Cerenkov response ratio and the muon arrival time dispersion. This paper presents conclusions based on muon fluctuation studies of EAS measured between 1976 and 1981 at Haverah Park

    The muon content of EAS as a function of primary energy

    Get PDF
    The muon content of extensive air showers (EAS) was measured over the wide primary energy range 10 to the 16th power to 10 to the 20th power eV. It is reported that the relative muon content of EAS decreases smoothly over the energy range 10 to the 17th power to 10 to the 19th power eV and concluded that the primary cosmic ray flux has a constant mass composition over this range. It is also reported that an apparent significant change in the power index occurs below 10 to the 17th power eV rho sub c (250 m) sup 0.78. Such a change indicates a significant change in primary mass composition in this range. The earlier conclusions concerning EAS of energy 10 to the 17th power eV are confirmed. Analysis of data in the 10 to the 16th power - 10 to the 17th power eV range revealed a previously overlooked selection bias in the data set. The full analysis of the complete data set in the energy range 10 to the 16th power - 10 to the 17th power ev with the selection bias eliminated is presented

    MapX: an In-Situ Mapping X-Ray Fluorescence Instrument for Detection of Biosignatures and Habitable Planetary Environments

    Get PDF
    The search for evidence of life or its processes on other worlds takes on two major themes: the detection of biosignatures indicating extinct or extant life, or the determination that an environment either has or once had the potential to harbor living organisms. In situ elemental imaging is useful in either case, since features on the mm to m scale reveal geological processes which may indicate past or present habitability. Further, biomineralization can leave traces in the morphology and element distribution of surfaces. The Mapping X-ray Fluorescence Spectrometer (MapX) is an in-situ instrument designed to identify these features on planetary surfaces [1]. Progress on instrument development, data analysis methods, and element quantification are presented

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements
    corecore