15,090 research outputs found

    The molecular emission-line spectrum of IRC +10216 between 330 and 358 GHz

    Get PDF
    We have conducted a spectral line survey of IRC + 10216 using the Caltech Submillimeter Observatory to an average sensitivity of ≟95 mK. A deconvolution algorithm has been used to derive the continuous single-sideband spectrum from 330.2 to 358.1 GHz. A total of 56 spectral lines were detected of which 54 have been identified with 8 molecules and a total of 18 isotopomers. The observed lines are used to derive column densities and relative abundances for the detected species. Within this frequency range the spectral lines detected contribute the majority of the total flux emitted by IRC + 10216. We use the derived column densities and excitation temperatures to simulate the molecular line emission (assuming LTE) at frequencies up to 1000 GHz. The observed and simulated flux from line emission is compared to broadband total flux measurements and to dust emission assuming a power-law variation of the dust emissivity. We conclude that significant corrections for the line flux must be made to broadband flux measurements of IRC + 10216 at wavelengths longer than ~750 ”m

    Comparison of submillimeter and ultraviolet observations of neutral carbon toward Zeta Ophiuchi

    Get PDF
    We have observed the ^3P_1 → ^3P_0 ground state transition of C_I emission toward ζ Oph. We compare this observation with predictions made from Copernicus ultraviolet absorption measurements of the population of the ^3P_1 level and with millimeter wave observations of CO

    The abundances of atomic carbon and carbon monoxide compared with visual extinction in the Ophiuchus molecular cloud complex

    Get PDF
    We have observed emission from the 492 GHz lines of C I toward six positions in the Ophiuchus molecular cloud complex for which accurate visual extinctions are available. We find that the column density of C I increases with A_v to greater than 2 x 10^(17) cm^(-2) at 100 mag, the column-averaged fractional abundance reaches a peak of about 2.2 x 10^(-5) for A_v in the range 4-11 mag and the column-averaged abundance ratio of C I to CO decreases with A_v from about 1 at 2 mag to greater than ~0.03 at 100 mag. These results imply that, while C I is not the primary reservoir of gaseous carbon even at cloud edges, its fractional abundance remains high for at least 10 mag into the cloud and may be significant at even greater depths

    Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity

    Get PDF
    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m<sup>2</sup>/h and 4.7±2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)

    First detection of the ground-state J_K = 1_0 → 0_0 submillimeter transition of interstellar ammonia

    Get PDF
    The J_K = 1_0 → 0_0 transition of ammonia at 572.5 GHz has been detected in OMC-1 from NASA's Kuiper Airborne Observatory. The central velocity of the line (V_(LSR)≈ 9 km s^(-1)) indicates that it originates in the molecular cloud material, not in the hot core. The derived filling factor of ≳ 0.09 in a 2' beam implies a source diameter of ≳ 35" if it is a single clump. This clump area is much larger than that derived from observations of the 1_1 inversion transition. The larger optical depth in the 1_0 → 0_0 transition (75-350) can account for the increased source area and line width as compared with those seen in the 1_1 inversion transition

    Dust, Ice, and Gas In Time (DIGIT) Herschel program first results: A full PACS-SED scan of the gas line emission in protostar DK Chamaeleontis

    Get PDF
    Aims. We aim to study the composition and energetics of the circumstellar material of DK Cha, an intermediate-mass star in transition from an embedded configuration to a star plus disk stage, during this pivotal stage of its evolution. Methods. Using the range scan mode of PACS on the Herschel Space Observatory, we obtained a spectrum of DK Cha from 55 to 210 ÎŒm as part of the DIGIT key program. Results. Almost 50 molecular and atomic lines were detected, many more than the 7 lines detected in ISO-LWS. Nearly the entire ladder of CO from J = 14–13 to 38–37 (E_u/k = 4080 K), water from levels as excited as J_(K−1 K+1) = 7_(07) (E_u/k = 843 K), and OH lines up to E_u/k = 290 K were detected. Conclusions. The continuum emission in our PACS SED scan matches the flux expected by a model consisting of a star, a surrounding disk of 0.03 M_⊙, and an envelope of a similar mass, supporting the suggestion that the object is emerging from its main accretion stage. Molecular, atomic, and ionic emission lines in the far-infrared reveal the outflow’s influence on the envelope. The inferred hot gas may be photon-heated, but some emission may be caused by C-shocks in the walls of the outflow cavity

    Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1

    Get PDF
    We report the first detection of a chlorine-bearing molecular species in the interstellar medium via emission from the J = 1 → 0 transition of HCl at 625.9 GHz toward OMC-1. The relative strengths, widths, and velocities of the resolved hyperfine components are consistent with moderate optical depth emission originating from dense, quiescent molecular cloud material (V_(LSR) = 9 km s^(-1)). The overall emission strength implies a fractional abundance of f(HCl/H_2) ~ (0.5-5.0) x 10^(-8), depending on the density of the emitting region. This is approximately an order of magnitude below previous theoretical estimates and a factor of 3-30 below the cosmic abundance of Cl. Recent laboratory work suggests that the lowered fractional abundance of HCl is caused by a combination of depletion onto grains with gas-phase loss processes such as the reaction of HCl with C^+

    A Line Survey of Orion KL from 325 to 360 GHz

    Get PDF
    We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is SO_2, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH_3, CH_3CH_2CN, and CH_3OCH_3, but their contribution to the total flux is unimportant. CH_3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v_2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core

    First detection of the ground state JK = 1 sub 0 going to 0 sub 0 submillimeter transition of interstellar ammonia

    Get PDF
    The JK = 1 sub 0 approaching O sub 0 transition of ammonia at 572.5 GHz was detected in OMC-1 from NASA's Kuiper Airborne Observatory. The central velocity of the line (VLSR approximately = 9 km/s) indicates that it originates in the molecular cloud material, not the hot core. The derived filling factor of approximately 0.09 in a 2' beam implies a source diameter of approximately 35" if it is a single clump. This clump area is much larger than that derived from observations of the sub 1 inversion transition. The larger optical depth in the 1 sub 0 approaching 0 sub 0 transition (75-350) can account for the increased source area and linewidth as compared with those seen in the 1 sub 0 inversion transition
    • 

    corecore