95 research outputs found
Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers
Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and
FEL applications where high energy resolution (in the order of eV) is
important. Increasing WDS energy resolution requires increasing spatial
resolution of the detectors in the dispersion direction. The common approaches
with strip detectors or small pixel detectors are not ideal. We present a novel
approach, with a sensor using rectangular pixels with a high aspect ratio
(between strips and pixels, further called "strixels"), and strixel
redistribution to match the square pixel arrays of typical ASICs while avoiding
the considerable effort of redesigning ASICs. This results in a sensor area of
17.4 mm x 77 mm, with a fine pitch of 25 m in the horizontal direction
resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs,
leveraging their low noise (43 e, or 180 eV rms). We present results
obtained with a Hammerhead ePix100 camera, showing that the small pitch (25
m) in the dispersion direction maximizes performance for both high and low
photon occupancies, resulting in optimal WDS energy resolution. The low noise
level at high photon occupancy allows precise photon counting, while at low
occupancy, both the energy and the subpixel position can be reconstructed for
every photon, allowing an ultrahigh resolution (in the order of 1 m) in
the dispersion direction and rejection of scattered beam and harmonics. Using
strixel sensors with redistribution and flip-chip bonding to standard ePix
readout ASICs results in ultrahigh position resolution (1 m) and low
noise in WDS applications, leveraging the advantages of hybrid pixel detectors
(high production yield, good availability, relatively inexpensive) while
minimizing development complexity through sharing the ASIC, hardware, software
and DAQ development with existing versions of ePix cameras.Comment: 8 pages, 6 figure
Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs
ePix10K is a hybrid pixel detector developed at SLAC for demanding
free-electron laser (FEL) applications, providing an ultrahigh dynamic range
(245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high,
medium and low) and two auto-ranging modes (high-to-low and medium-to-low). The
first ePix10K cameras are built around modules consisting of a sensor flip-chip
bonded to 4 ASICs, resulting in 352x384 pixels of 100 m x 100 m each.
We present results from extensive testing of three ePix10K cameras with FEL
beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e
equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We
demonstrate the linearity of the response in various gain combinations: fixed
high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging
medium-to-low, while maintaining a low noise (well within the counting
statistics), a very low cross-talk, perfect saturation response at fluxes up to
900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we
present examples of high dynamic range x-ray imaging spanning more than 4
orders of magnitude dynamic range (from a single photon to 11000
photons/pixel/pulse at 8 keV). Achieving this high performance with only one
auto-ranging switch leads to relatively simple calibration and reconstruction
procedures. The low noise levels allow usage with long integration times at
non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel
detectors with high production yield and good availability, minimize
development complexity through sharing the hardware, software and DAQ
development with all other versions of ePix cameras, while providing an upgrade
path to 5 kHz, 25 kHz and 100 kHz in three steps over the next few years,
matching the LCLS-II requirements.Comment: 9 pages, 5 figure
Atomistic characterization of the active-site solvation dynamics of a model photocatalyst
The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir-2(dimen)(4)](2+), where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.1
- …