2,256 research outputs found
Volunteer Recruitment and Retention in Maine Performing Arts Organizations
Performing arts organizations across the country heavily rely on a combination of ticket sales, individual and organizational contributions, and grant money to fund their operations. As a direct result, performing arts organizations have become increasingly reliant on volunteers to occupy both commonplace and significant operational and managerial roles within their establishments
First-order sidebands in circuit QED using qubit frequency modulation
Sideband transitions have been shown to generate controllable interaction
between superconducting qubits and microwave resonators. Up to now, these
transitions have been implemented with voltage drives on the qubit or the
resonator, with the significant disadvantage that such implementations only
lead to second-order sideband transitions. Here we propose an approach to
achieve first-order sideband transitions by relying on controlled oscillations
of the qubit frequency using a flux-bias line. Not only can first-order
transitions be significantly faster, but the same technique can be employed to
implement other tunable qubit-resonator and qubit-qubit interactions. We
discuss in detail how such first-order sideband transitions can be used to
implement a high fidelity controlled-NOT operation between two transmons
coupled to the same resonator.Comment: 15 pages, 5 figure
Development of a real-time full-field range imaging system
This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene.
The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes
Silicon materials task of the low cost solar array project, part 2
Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency
Low cost silicon solar array project large area silicon sheet task: Silicon web process development
Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals
Silicon web process development
Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities
Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers
Achieving individual qubit readout is a major challenge in the development of
scalable superconducting quantum processors. We have implemented the
multiplexed readout of a four transmon qubit circuit using non-linear
resonators operated as Josephson bifurcation amplifiers. We demonstrate the
simultaneous measurement of Rabi oscillations of the four transmons. We find
that multiplexed Josephson bifurcation is a high-fidelity readout method, the
scalability of which is not limited by the need of a large bandwidth nearly
quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference
Quantum error correction benchmarks for continuous weak parity measurements
We present an experimental procedure to determine the usefulness of a
measurement scheme for quantum error correction (QEC). A QEC scheme typically
requires the ability to prepare entangled states, to carry out multi-qubit
measurements, and to perform certain recovery operations conditioned on
measurement outcomes. As a consequence, the experimental benchmark of a QEC
scheme is a tall order because it requires the conjuncture of many elementary
components. Our scheme opens the path to experimental benchmarks of individual
components of QEC. Our numerical simulations show that certain parity
measurements realized in circuit quantum electrodynamics are on the verge of
being useful for QEC
- …