1,265 research outputs found

    Lensing-Induced Structure of Submillimeter Sources: Implications for the Microwave Background

    Get PDF
    We consider the effect of lensing by galaxy clusters on the angular distribution of submillimeter wavelength objects. While lensing does not change the total flux and number counts of submillimeter sources, it can affect the number counts and fluxes of flux-limited samples. Therefore imposing a flux cut on point sources not only reduces the overall Poisson noise, but imprints the correlations between lensing clusters on the unresolved flux distribution. Using a simple model, we quantify the lensing anisotropy induced in flux-limited samples and compare this to Poisson noise. We find that while the level of induced anisotropies on the scale of the cluster angular correlation length is comparable to Poisson noise for a slowly evolving cluster model, it is negligible for more realistic models of cluster evolution. Thus the removal of point sources is not expected to induce measurable structure in the microwave or far-infrared backgrounds.Comment: 22 pages, 9 figures, accepted to Astrophysical Journa

    Radio Identification of Sub-mm Sources in the Hubble Deep Field

    Get PDF
    Determination of the epoch dependent star-formation rate of field galaxies is one of the principal goals of modern observational cosmology. Recently, Hughes et al. (1998) using the SCUBA instrument on the James Clerk Maxwell Telescope, report the detection of a new population of heavily dust enshrouded, star-forming galaxies at high redshifts (z > 2), dramatically altering the picture of galaxy evolution. However, we show that this interpretation must be treated with caution because of ambiguities in the identification of the host galaxies. Based on our deep, high resolution 1.4 GHz obervations of the Hubble Deep Field, we suggest alternate identifications to the sub-mm detections. These identifications argue for a substantially lower redshift to the sub-mm population with a consequential lowering of the z > 2 sub-mm/far infrared luminosity density and global star-formation rate.Comment: 13 pages, 5 figures, 1 table, submitted to ApJ, new radio images available at http://www.cv.nrao.edu/~jkempner/vla-hdf

    Small Deviations from Gaussianity and The Galaxy Cluster Abundance Evolution

    Get PDF
    We raise the hypothesis that the density fluctuations field which originates the growth of large scale structures is a combination of two or more distributions. By applying the statistical analysis of finite mixture distributions to a specific combination of Gaussian plus non-Gaussian random fields, we studied the case where just a small departure from Gaussianity is allowed. Our results suggest that even a very small level of non-Gaussianity may introduce significant changes in the cluster abundance evolution rate.Comment: 10 pages with 2 figures, accepted for publication in Ap

    HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies

    Get PDF
    We present colours of sources detected with the Herschel/SPIRE instrument in deep extragalactic surveys of the Lockman Hole, Spitzer-FLS, and GOODS-N fields in three photometric bands at 250, 350 and 500 ÎŒm. We compare these with expectations from the literature and discuss associated uncertainties and biases in the SPIRE data. We identify a 500 ÎŒm flux limited selection of sources from the HerMES point source catalogue that appears free from neighbouring/blended sources in all three SPIRE bands. We compare the colours with redshift tracks of various contemporary models. Based on these spectral templates we show that regions corresponding to specific population types and redshifts can be identified better in colour-flux space. The redshift tracks as well as the colour-flux plots imply a majority of detected objects with redshifts at 1 < z < 3.5, somewhat depending on the group of model SEDs used. We also find that a population of sources with S_(250)/S_(350) < 0.8 at fluxes above 50 mJy as observed by SPIRE are not well represented by contemporary models and could consist of a mix of cold and lensed galaxies

    Dusty star forming galaxies at high redshift

    Get PDF
    The global star formation rate in high redshift galaxies, based on optical surveys, shows a strong peak at a redshift of z=1.5, which implies that we have already seen most of the formation. High redshift galaxies may, however, emit most of their energy at submillimeter wavelengths if they contain substantial amounts of dust. The dust would absorb the starlight and reradiate it as far-infrared light, which would be redshifted to the submillimeter range. Here we report a deep survey of two blank regions of sky performed at submillimeter wavelengths (450 and 850-micron). If the sources we detect in the 850-micron band are powered by star formation, then each must be converting more than 100 solar masses of gas per year into stars, which is larger than the maximum star formation rates inferred for most optically-selected galaxies. The total amount of high redshift star formation is essentially fixed by the level of background light, but where the peak occurs in redshift for the submillimeter is not yet established. However, the background light contribution from only the sources detected at 850-micron is already comparable to that from the optically-selected sources. Establishing the main epoch of star formation will therefore require a combination of optical and submillimeter studies.Comment: 10 pages + 2 Postscript figures, under embargo at Natur

    Multi-wavelength Observations of Dusty Star Formation at Low and High Redshift

    Full text link
    This paper examines what can be learned about high-redshift star formation from the small fraction of high-redshift galaxies' luminosities that is emitted at accessible wavelengths. We review and quantify empirical correlations between bolometric luminosities produced by star formation and the UV, mid-IR, sub-mm, and radio luminosities of galaxies in the local universe. These correlations suggest that observations of high-redshift galaxies at any of these wavelengths should constrain their star-formation rates to within 0.2--0.3 dex. We assemble the limited evidence that high-redshift galaxies obey these locally calibrated correlations. The characteristic luminosities and dust obscurations of galaxies at z ~ 0, z ~ 1, and z ~ 3 are reviewed. After discussing the relationship between the high-redshift populations selected in surveys at different wavelengths, we calculate the contribution to the 850um background from each. The available data show that a correlation between star-formation rate and dust obscuration L_dust/L_UV exists at low and high redshift. This correlation plays a central role in the major conclusion of this paper: most star formation at high redshift occurred in galaxies with 1 < L_dust/L_UV < 100 similar to those that host the majority of star formation in the local universe and to those that are detected in UV-selected surveys. (abridged)Comment: Scheduled for publication in ApJ v544 Dec 2000. Significant changes to section 4. Characteristic UV and dust luminosities of star-forming galaxies at redshifts z~0, z~1, and z~3 presented. Existence of extremely obscured galaxies more clearly acknowledged. Original conclusions reinforced by the observed correlation between bolometric luminosity and dust obscuration at 0<z<
    • 

    corecore