64 research outputs found

    Ultra-broadband polarisation beam splitters and rotators based on 3D-printed waveguides

    Get PDF

    Efficient Coupling Interfaces in Photonic Systems Enabled by Printed Freeform Micro-Optics

    Get PDF
    In this presentation, we give an overview of our recent progress in exploiting direct-write two-photon lithography for additive 3D fabrication of freeform micro-optical elements. These elements can be printed with highest precision in direct contact with the facets of photonic integrated circuits or optical fibers, thereby greatly simplifying alignment and improving coupling efficiency. The approach offers new perspectives for a wide variety of applications, ranging from advanced photonic multi-chip modules for high-speed communications and optical sensing to highly efficient astro-photonic systems. We are currently working on transferring the concept from laboratory demonstrations to industrial manufacturing

    Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems

    Get PDF
    Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor
    corecore