341 research outputs found

    Romanticism and Deconstruction

    Get PDF

    Rules and Exercises: German Textbooks for Teaching and Learning English around 1800

    Get PDF

    3D-Printed Optics for Wafer-Scale Probing

    Get PDF
    Mass production of photonic integrated circuits requires high-throughput wafer-level testing. We demonstrate that optical probes equipped with 3D-printed elements allow for efficient coupling of light to etched facets of nanophotonic waveguides. The technique is widely applicable to different integration platforms.Comment: Accepted for presentation at European Conference on Optical Communications (ECOC) 201

    Ultra-broadband polarization beam splitter and rotator based on 3D-printed waveguides

    Full text link
    Multi-photon lithography has emerged as a powerful tool for photonic integration, allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements. These structures can be fabricated with high precision on the facets of optical devices and lend themselves to highly efficient package-level chip-chip-connections in photonic assemblies. However, plain light transport and efficient coupling is far from exploiting the full geometrical design freedom that is offered by 3D laser lithography. Here, we extend the functionality of 3D-printed optical structures to manipulation of optical polarization states. We demonstrate compact ultra-broadband polarization beam splitters (PBS) that can be combined with polarization rotators (PR) and mode-field adapters into a monolithic 3D-printed structure, fabricated directly on the facets of optical devices. In a proof-of-concept experiment, we demonstrate measured polarization extinction ratios beyond 11 dB over a bandwidth of 350 nm at near-infrared (NIR) telecommunication wavelengths around 1550 nm. We demonstrate the viability of the device by receiving a 640 Gbit/s dual-polarization data signal using 16-state quadrature amplitude modulation (16QAM), without any measurable optical-signal-to-noise-ratio (OSNR) penalty compared to a commercial PBS.Comment: 11 pages and 4 figures in the main part + 7 pages and 4 figures in the supplementar

    Ultra-broadband polarisation beam splitters and rotators based on 3D-printed waveguides

    Get PDF

    3D-Printed Scanning-Probe Microscopes with Integrated Optical Actuation and Read-Out

    Get PDF
    Scanning‐probe microscopy (SPM) is the method of choice for high‐resolution imaging of surfaces in science and industry. However, SPM systems are still considered as rather complex and costly scientific instruments, realized by delicate combinations of microscopic cantilevers, nanoscopic tips, and macroscopic read‐out units that require high‐precision alignment prior to use. This study introduces a concept of ultra‐compact SPM engines that combine cantilevers, tips, and a wide variety of actuator and read‐out elements into one single monolithic structure. The devices are fabricated by multiphoton laser lithography as it is a particularly flexible and accurate additive nanofabrication technique. The resulting SPM engines are operated by optical actuation and read‐out without manual alignment of individual components. The viability of the concept is demonstrated in a series of experiments that range from atomic‐force microscopy engines offering atomic step height resolution, their operation in fluids, and to 3D printed scanning near‐field optical microscopy. The presented approach is amenable to wafer‐scale mass fabrication of SPM arrays and capable to unlock a wide range of novel applications that are inaccessible by current approaches to build SPMs
    • 

    corecore