273 research outputs found

    Ferromagnetic insulating state in tensile-strained LaCoO3_3 thin films

    Full text link
    With local density approximation + Hubbard UU (LDA+UU) calculations, we show that the ferromagnetic (FM) insulating state observed in tensile-strained LaCoO3_3 epitaxial thin films is most likely a mixture of low-spin (LS) and high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM states, including the intermediate-spin (IS) state (\textit{metallic} within LDA+UU), which consists of IS Co only, and the insulating IS/LS mixture state, the HS/LS state is the most favorable one. The FM order in HS/LS state is stabilized via the superexchange interactions between adjacent LS and HS Co. We also show that Co spin state can be identified by measuring the electric field gradient (EFG) at Co nucleus via nuclear magnetic resonance (NMR) spectroscopy

    Supersonic STOVL propulsion technology program: An overview

    Get PDF
    Planning activities are continuing between NASA, the DoD, and two foreign governments to develop the technology and to show the design capability by the mid-1990's for advanced, supersonic, short takeoff and vertical landing (STOVL) aircraft. Propulsion technology is the key to achieving viable STOVL aircraft, and NASA Lewis will play a lead role in the development of these required propulsion technologies. The initial research programs are focused on technologies common to two or more of the possible STOVL propulsion system concepts. An overview is presented of the NASA Lewis role in the overall program plan and recent results of the research program. The future research program will be focused on one or possibly two of the propulsion concepts seen as most likely to be successful in the post advanced tactical fighter time frame

    NASA supersonic STOVL propulsion technology program

    Get PDF
    Supersonic capable STOVL fighter/attack aircraft can provide capabilities for close support and air superiority which will be highly desirable in the future. Previous papers in this session described the historical aspects, trade-offs, and requirements for powered lift propulsion systems, and it is shown that propulsion technology is more key to the success of this type of aircraft then for any previous fighter/attack aircraft. The NASA Lewis Research Center program activities which address required propulsion technology development are discussed. Several elements of this program were initiated which address hot gas ingestion and ejector augmenter performance and some preliminary results are shown. In addition, some additional near-term research activity plans and the new Powered Lift Facility (PLF) research capability are presented

    Comparison between exact and semilocal exchange potentials: An all-electron study for solids

    Get PDF
    The exact-exchange (EXX) potential, which is obtained by solving the optimized-effective potential (OEP) equation, is compared to various approximate semilocal exchange potentials for a set of selected solids (C, Si, BN, MgO, Cu2_{2}O, and NiO). This is done in the framework of the linearized augmented plane-wave method, which allows for a very accurate all-electron solution of electronic structure problems in solids. In order to assess the ability of the semilocal potentials to approximate the EXX-OEP, we considered the EXX total energy, electronic structure, electric-field gradient, and magnetic moment. An attempt to parameterize a semilocal exchange potential is also reported
    • …
    corecore