10 research outputs found

    Gravitation: Global Formulation and Quantum Effects

    Full text link
    A nonintegrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity with electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.Comment: Latex (IOP style), 14 pages, 3 figures. To appear in Classical and Quantum Gravit

    The gravitational energy-momentum flux

    Full text link
    We present a continuity equation for the gravitational energy-momentum, which is obtained in the framework of the teleparallel equivalent of general relativity. From this equation it follows a general definition for the gravitational energy-momentum flux. This definition is investigated in the context of plane waves and of cylindrical Einstein-Rosen waves. We obtain the well known value for the energy flux of plane gravitational waves, and conclude that the latter exhibit features similar to plane electromagnetic waves.Comment: 20 pages, latex file, no figures, two references added, accepted for publication in Class. Quantum Gravit

    UTA versus line emission for EUVL: Studies on xenon emission at the NIST EBIT

    Full text link
    Spectra from xenon ions have been recorded at the NIST EBIT and the emission into a 2% bandwidth at 13.5 nm arising from 4d-5p transitions compared with that from 4d-4f and 4p-4d transitions in Xe XI and also with that obtained from the unresolved transition array (UTA) observed to peak just below 11 nm. It was found that an improvement of a factor of five could be gained in photon yield using the UTA rather than the 4d-5p emission. The results are compared with atomic structure calculations and imply that a significant gain in efficiency should be obtained using tin, in which the emission at 13.5 nm comes from a similar UTA, rather than xenon as an EUVL source material

    Original scientific paper Far-infrared spectroscopy of PbTe doped with iron

    No full text
    Far infrared reflection spectra, at room and liquid nitrogen temperature, of PbTe single crystals doped with iron are presented. Plasma minima were observed at about 160 cm –1 and 180 cm –1 for room and liquid nitrogen temperature, respectively. Using the reflectivity diagrams and their minima, the values of the hole concentrations and their mobility at both temperatures were calculated and compared with galvanomagnetic measurements. All these results indicated that when PbTe is doped with a small concentration of Fe, the hole concentration is reduced by one order of magnitude and the free carrier mobility is larger when compared to pure PbTe

    UTA versus line emission for EUVL : studies on xenon emission at the NIST EBIT

    No full text
    Spectra from xenon ions have been recorded at the NIST EBIT and the emission into a 2% bandwidth at 13.5 nm arising from 4d_5p transitions compared with that from 4d_4f and 4p_4d transitions in Xe XI and also with that obtained from the unresolved transition array (UTA) observed to peak just below 11 nm. It was found that an improvement of a factor of five could be gained in photon yield using the UTA rather than the 4d_5p emission. The results are compared with atomic structure calculations and imply that a significant gain in efficiency should be obtained using tin, in which the emission at 13.5 nm comes from a similar UTA, rather than xenon as an EUVL source material.Science Foundation Irelan

    Individualizing State Responsibility: Concurrent Attribution and Legal Consequences

    No full text
    corecore