223 research outputs found

    Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects

    Get PDF
    The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively

    Enhanced neuronal Met signalling levels in ALS mice delay disease onset

    Get PDF
    Signalling by receptor tyrosine kinases (RTKs) coordinates basic cellular processes during development and in adulthood. Whereas aberrant RTK signalling can lead to cancer, reactivation of RTKs is often found following stress or cell damage. This has led to the common belief that RTKs can counteract degenerative processes and so strategies to exploit them for therapy have been extensively explored. An understanding of how RTK stimuli act at cellular levels is needed, however, to evaluate their mechanism of therapeutic action. In this study, we genetically explored the biological and functional significance of enhanced signalling by the Met RTK in neurons, in the context of a neurodegenerative disease. Conditional met-transgenic mice, namely Rosa26LacZ−stop−Met, have been engineered to trigger increased Met signalling in a temporal and tissue-specific regulated manner. Enhancing Met levels in neurons does not affect either motor neuron (MN) development or maintenance. In contrast, increased neuronal Met in amyotrophic lateral sclerosis (ALS) mice prolongs life span, retards MN loss, and ameliorates motor performance, by selectively delaying disease onset. Thus, our studies highlight the properties of RTKs to counteract toxic signals in a disease characterized by dysfunction of multiple cell types by acting in MNs. Moreover, they emphasize the relevance of genetically assessing the effectiveness of agents targeting neurons during ALS evolution

    A decision support system-based procedure for evaluation and monitoring of protected areas sustainability for the Mediterranean region

    Get PDF
    WOS: 000297078900015Despite common acknowledgement of the value of protected areas as instruments in ensuring sustainability, and their promotion for the achievement of policies on halting the loss of biodiversity, there is no common approach today for monitoring and evaluating them. This paper presents a novel integrated nature conservation management procedure developed to monitor and evaluate the sustainability of Mediterranean protected areas. This procedure was successfully implemented and formally evaluated by protected area managers in six Mediterranean countries, results of which are presented here together with an overview of the web-based Decision Support System (DSS) developed to facilitate its wide adoption. The DSS and procedure has been designed and evaluated by managers as a useful tool, which facilitates and provides needed procedural guidance for protected area monitoring whilst minimizing input requirements to do so. The procedure and DSS were developed following a review of existing protected area assessment tools and a detailed primary investigation of the needs and capacity of its intended users. Essentially, the procedure and DSS guides provide the facilities for protected area managers, in following a participatory approach to develop a context-specific sustainability monitoring strategy, for their protected area. Consequently, the procedure is, by design, participatory, context specific, holistic and relevant to protected area management and institutional procedures. The procedure was piloted and formally evaluated in Greece, Italy, Turkey, Egypt, Malta and Cyprus. Feedback collected from the pilot evaluations is also summarised herein.INTERREG III B [A.1.222 INNOVA]This research was funded under INTERREG III B Programme 'Archimed' A.1.222 INNOVA Project. The authors would like to acknowledge the contribution and input of the partners, protected area authorities, stakeholders and local communities. Special thanks to the University of Bari, the Polytechnic of Bari, Apulian Ministry of Environment, University of Lecce, Maltese Ministry of Rural Affairs and Environment, University of Malta, Agricultural Research Institute of Cyprus, Prefecture of Chania, Egyptian Desert Research Center, Palestinian Ministry of Agriculture, Palestinian National Authority, and Al Quads University

    Olig3 regulates early cerebellar development

    Get PDF
    The mature cerebellum controls motor skill precision and participates in other sophisticated brain functions that include learning, cognition, and speech. Different types of GABAergic and glutamatergic cerebellar neurons originate in temporal order from two progenitor niches, the ventricular zone and rhombic lip, which express the transcription factors Ptf1a and Atoh1, respectively. However, the molecular machinery required to specify the distinct neuronal types emanating from these progenitor zones is still unclear. Here, we uncover the transcription factor Olig3 as a major determinant in generating the earliest neuronal derivatives emanating from both progenitor zones in mice. In the rhombic lip, Olig3 regulates progenitor cell proliferation. In the ventricular zone, Olig3 safeguards Purkinje cell specification by curtailing the expression of Pax2, a transcription factor that suppresses the Purkinje cell differentiation program. Our work thus defines Olig3 as a key factor in early cerebellar development

    The myogenic transcriptional network

    Get PDF
    Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program

    Edge stabilization in reduced-dimensional perovskites

    No full text
    Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 ± 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m-2; their maximum luminance is 4.5 × 104 cd m-2 (corresponding to an EQE of 5%); and, at 4000 cd m-2, they achieve an operational half-lifetime of 3.5 h.This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the US Department of Navy, Office of Naval Research (Grant Award No. N00014-17-1-2524). H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #815128-REALNANO). M.B.J.R. and J.H. acknowledge the Research Foundation-Flanders (FWO, Grants G.0962.13, G.0B39.15, AKUL/11/14 and G0H6316N), KU Leuven Research Fund (C14/15/053) and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. [307523], ERC-Stg LIGHT to M.B.J.R. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). M.I.S. acknowledges the Banting Postdoctoral Fellowship program from the Natural Sciences and Engineering Research Council of Canada (NSERC). H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511)

    Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multi-detector computed tomography angiography (MDCTA)of the coronary arteries after stenting has been evaluated in multiple studies.</p> <p>The purpose of this study was to perform a structured review and meta-analysis of the diagnostic performance of MDCTA for the detection of in-stent restenosis in the coronary arteries.</p> <p>Methods</p> <p>A Pubmed and manual search of the literature on in-stent restenosis (ISR) detected on MDCTA compared with conventional coronary angiography (CA) was performed. Bivariate summary receiver operating curve (SROC) analysis, with calculation of summary estimates was done on a stent and patient basis. In addition, the influence of study characteristics on diagnostic performance and number of non-assessable segments (NAP) was investigated with logistic meta-regression.</p> <p>Results</p> <p>Fourteen studies were included. On a stent basis, Pooled sensitivity and specificity were 0.82(0.72–0.89) and 0.91 (0.83–0.96). Pooled negative likelihood ratio and positive likelihood ratio were 0.20 (0.13–0.32) and 9.34 (4.68–18.62) respectively. The exclusion of non-assessable stents and the strut thickness of the stents had an influence on the diagnostic performance. The proportion of non-assessable stents was influenced by the number of detectors, stent diameter, strut thickness and the use of an edge-enhancing kernel.</p> <p>Conclusion</p> <p>The sensitivity of MDTCA for the detection of in-stent stenosis is insufficient to use this test to select patients for further invasive testing as with this strategy around 20% of the patients with in-stent stenosis would be missed. Further improvement of scanner technology is needed before it can be recommended as a triage instrument in practice. In addition, the number of non-assessable stents is also high.</p

    Conditional Genetic Elimination of Hepatocyte Growth Factor in Mice Compromises Liver Regeneration after Partial Hepatectomy

    Get PDF
    Hepatocyte growth factor (HGF) has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ERT transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70-80%) of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH), which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4)-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth. © 2013 Nejak-Bowen et al
    corecore