17 research outputs found

    Glycemic, Gastrointestinal, Hormonal and Appetitive Responses to Pearl Millet or Oats Porridge Breakfasts: a Randomized, Crossover Trial in Healthy Humans

    Get PDF
    Whole grain cereal breakfast consumption has been associated with beneficial effects on glucose and insulin metabolism as well as satiety. Pearl millet is a popular ancient grain variety that can be grown in hot, dry regions. However, little is known about its health effects. This study investigated the effect of a pearl millet porridge (PMP) compared with a well-known Scottish oats porridge (SOP) on glycaemic, gastrointestinal, hormonal and appetitive responses. In a randomized, two way crossover trial, 26 healthy participants consumed two iso-energetic/volumetric PMP or SOP breakfast meals, served with a drink of water. Blood samples for glucose, insulin, GLP-1, GIP and PYY, gastric volumes and appetite ratings were collected for two hours postprandially, followed by an ad libitum meal and food intake records for the remainder of the day. The incremental area under the curve (iAUC2h) for blood glucose was not significantly different between the porridges (p ˃ 0.05). The iAUC2h gastric volume was larger for PMP compared with SOP (p = 0.045). The iAUC2h GIP concentration was significantly lower for PMP compared with SOP (p = 0.001). Other hormones and appetite responses were similar between meals. In conclusion, this study reports, for the first time, data on glycaemic and physiological responses to a pearl millet breakfast, showing that this ancient grain could represent a sustainable, alternative, with health-promoting characteristics comparable to oats. GIP is an incretin hormone linked to triacylglycerol absorption in adipose tissue, therefore the lower GIP response for PMP may be an added health benefit

    Net Handling Simplified: Put Your Net on a Card!

    No full text

    An Improved Method of Net Handling and Storage

    No full text

    Harlan\u27s Hawk Over-winters in St Lucie County, Florida

    No full text

    Harlan\u27s Hawk Over-winters in St Lucie County, Florida

    No full text

    Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa

    No full text
    Autosomal dominant retinitis pigmentosa (adRP) is a heterogeneous set of progressive retinopathies caused by several distinct genes. One locus, the RP10 form of adRP, maps to human chromosome 7q31.1 and may account for 5–10% of adRP cases among Americans and Europeans. We identified two American families with the RP10 form of adRP by linkage mapping and used these families to reduce the linkage interval to 3.45 Mb between the flanking markers D7S686 and RP-STR8. Sequence and transcript analysis identified 54 independent genes within this region, at least 10 of which are retinal-expressed and thus candidates for the RP10 gene. A screen of retinal transcripts comparing retinas from normal mice to retinas from crx − /crx − knockout mice (with poorly differentiated photoreceptors) demonstrated a 6-fold reduction in one candidate, inosine monophosphate dehydrogenase 1 (IMPDH1; EC 1.1.1.205). Since many of the genes known to cause retinitis pigmentosa are under CRX control in photoreceptors, IMPDH1 became a high-priority candidate for mutation screening. DNA sequencing of affected individuals from the two American RP10 families revealed a GAC→AAC transition in codon 226 substituting an asparagine for an aspartic acid in both families. The identical mutation was also found in a British RP10 family. The Asp226Asn missense mutation is present in all affected individuals tested and absent from unaffected controls. The aspartic acid at codon 226 is conserved in all IMPDH genes, in all species examined, including bacteria, suggesting that this mutation is highly deleterious. Subsequent screening of probands from 60 other adRP families revealed an additional family with this mutation, confirming its association with retinitis pigmentosa and the relatively high frequency of this mutation. Another IMPDH1 substitution, Val268Ile, was also observed in this cohort of patients but not in controls. IMPDH1 is a ubiquitously expressed enzyme, functioning as a homotetramer, which catalyzed the rate-limiting step in de novo synthesis of guanine nucleotides. As such, it plays an important role in cyclic nucleoside metabolism within photoreceptors. Several classes of drugs are known to affect IMPDH isoezymes, including nucleotide and NAD analogs, suggesting that small-molecule therapy may be available, one day, for RP10 patients
    corecore