11,910 research outputs found
Transport properties and point contact spectra of Ni_xNb_{1-x} metallic glasses
Bulk resistivity and point contact spectra of Ni_xNb_{1-x} metallic glasses
have been investigated as functions of temperature (0.3-300K) and magnetic
field (0-12T). Metallic glasses in this family undergo a superconducting phase
transition determined by the Nb concentration. When superconductivity was
suppressed by a strong magnetic field, both the bulk sample R(T) and the point
contact differential resistance curves of Ni_xNb_{1-x} showed logarithmic
behavior at low energies, which is explained by a strong electron - "two level
system" coupling. We studied the temperature, magnetic field and contact
resistance dependence of Ni_{44}Nb_{56} point-contact spectra in the
superconducting state and found telegraph-like fluctuations superimposed on
superconducting characteristics. These R(V) characteristics are extremely
sensitive detectors for slow relaxing "two level system" motion.Comment: 4 pages, 5 figure
On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15
[Abridged] Our aim is to explore the gas dynamics and the accretion process
in the early phase of high-mass star formation. The inward motion of molecular
gas in the massive star forming region G34.26+0.15 is investigated by using
high-resolution profiles of seven transitions of ammonia at THz frequencies
observed with Herschel-HIFI. The shapes and intensities of these lines are
interpreted in terms of radiative transfer models of a spherical, collapsing
molecular envelope. An accelerated Lambda Iteration (ALI) method is used to
compute the models. The seven ammonia lines show mixed absorption and emission
with inverse P-Cygni-type profiles that suggest infall onto the central source.
A trend toward absorption at increasingly higher velocities for higher
excitation transitions is clearly seen in the line profiles. The lines show only very weak emission, so these absorption profiles
can be used directly to analyze the inward motion of the gas. This is the first
time a multitransitional study of spectrally resolved rotational ammonia lines
has been used for this purpose. Broad emission is, in addition, mixed with the
absorption in the ortho-NH line, possibly tracing a molecular
outflow from the star forming region. The best-fitting ALI model reproduces the
continuum fluxes and line profiles, but slightly underpredicts the emission and
absorption depth in the ground-state ortho line . The derived
ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core
similar to recent findings for translucent clouds in sight lines toward W31C
and W49N. We find evidence of two gas components moving inwards toward the
central region with constant velocities: 2.7 and 5.3 kms, relative
to the source systemic velocity. The inferred mass accretion rates derived are
sufficient to overcome the expected radiation pressure from G34.26+0.15.Comment: 20 pages, 18 figures, accepted by A&A 3 October 201
Solitonic-exchange mechanism of surface~diffusion
We study surface diffusion in the framework of a generalized
Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The
model describes a lattice of atoms with a given concentration interacting by
Morse-type forces, the lattice being subjected to a two-dimensional substrate
potential which is periodic in one direction and nonconvex (Morse) in the
transverse direction. The results are used to describe the complicated
exchange-mediated diffusion mechanism recently observed in MD simulations [J.E.
Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.
Effects of Spin-Orbit Interactions on Tunneling via Discrete Energy Levels in Metal Nanoparticles
The presence of spin-orbit scattering within an aluminum nanoparticle affects
measurements of the discrete energy levels within the particle by (1) reducing
the effective g-factor below the free-electron value of 2, (2) causing avoided
crossings as a function of magnetic field between predominantly-spin-up and
predominantly-spin-down levels, and (3) introducing magnetic-field-dependent
changes in the amount of current transported by the tunneling resonances. All
three effects can be understood in a unified fashion by considering a simple
Hamiltonian. Spin-orbit scattering from 4% gold impurities in superconducting
aluminum nanoparticles produces no dramatic effect on the superconducting gap
at zero magnetic field, but we argue that it does modify the nature of the
superconducting transition in a magnetic field.Comment: 10 pages, 5 figures. Submitted to Phys. Rev.
Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles
We measure electron tunneling via discrete energy levels in ferromagnetic
cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due
to magnetic anisotropy, the energy of each tunneling resonance shifts as an
applied magnetic field rotates the particle's magnetic moment. We see both
spin-increasing and decreasing tunneling transitions, but we do not observe the
spin degeneracy at small magnetic fields seen previously in non-magnetic
materials. The tunneling spectrum is denser than predicted for independent
electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in
Phys. Rev. Let
Gate-Voltage Studies of Discrete Electronic States in Al Nanoparticles
We have investigated the spectrum of discrete electronic states in single,
nm-scale Al particles incorporated into new tunneling transistors, complete
with a gate electrode. The addition of the gate has allowed (a) measurements of
the electronic spectra for different numbers of electrons in the same particle,
(b) greatly improved resolution and qualitatively new results for spectra
within superconducting particles, and (c) detailed studies of the gate-voltage
dependence of the resonance level widths, which have directly demonstrated the
effects of non-equilibrium excitations.Comment: 4 pages, 7 figure
Dephasing in Metals by Two-Level Systems in the 2-Channel-Kondo Regime
We point out a novel, non-universal contribution to the dephasing rate
1/\tau_\phi \equiv \gamma_\phi of conduction electrons in metallic systems:
scattering off non-magnetic two-level systems (TLSs) having almost degenerate
Kondo ground states. In the regime \Delta_{ren} < T < T_K (\Delta_{ren} =
renormalized level splitting, T_K = Kondo temperature), such TLSs exhibit
non-Fermi-liquid physics that can cause \gamma_\phi, which generally decreases
with decreasing T, to seemingly saturate in a limited temperature range before
vanishing for T \to 0. This could explain the saturation of dephasing recently
observed in gold wires [Mohanty et al. Phys. Rev. Lett. 78, 3366 (1997)].Comment: Final published version, including minor improvements suggested by
referees. 4 pages, Revtex, 1 figur
Fractality of tics as a quantitative assessment tool for Tourette syndrome
Tics manifest as brief, purposeless and unintentional movements or noises that, for many individuals, can be suppressed temporarily with effort. Previous work has hypothesized that the chaotic temporal nature of tics could possess an inherent fractality, that is, have neighbour-to-neighbour correlation at all levels of timescale. However, demonstrating this phenomenon has eluded researchers for more than two decades, primarily because of the challenges associated with estimating the scale-invariant, power law exponent-called the fractal dimensio
- …