1,931 research outputs found
Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.
ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I-III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH
Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.
There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH
Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Type 2 diabetes and the metabolic syndrome are associated with impaired diastolic function and increased heart failure risk. Animal models and autopsy studies of diabetic patients implicate myocardial fibrosis, cardiomyocyte hypertrophy, altered myocardial microvascular structure and advanced glycation end-products (AGEs) in the pathogenesis of diabetic cardiomyopathy. We investigated whether type 2 diabetes and the metabolic syndrome are associated with altered myocardial structure, microvasculature, and expression of AGEs and receptor for AGEs (RAGE) in men with coronary artery disease.</p> <p>Methods</p> <p>We performed histological analysis of left ventricular biopsies from 13 control, 10 diabetic and 23 metabolic syndrome men undergoing coronary artery bypass graft surgery who did not have heart failure or atrial fibrillation, had not received loop diuretic therapy, and did not have evidence of previous myocardial infarction.</p> <p>Results</p> <p>All three patient groups had similar extent of coronary artery disease and clinical characteristics, apart from differences in metabolic parameters. Diabetic and metabolic syndrome patients had higher pulmonary capillary wedge pressure than controls, and diabetic patients had reduced mitral diastolic peak velocity of the septal mitral annulus (E'), consistent with impaired diastolic function. Neither diabetic nor metabolic syndrome patients had increased myocardial interstitial fibrosis (picrosirius red), or increased immunostaining for collagen I and III, the AGE Nε-(carboxymethyl)lysine, or RAGE. Cardiomyocyte width, capillary length density, diffusion radius, and arteriolar dimensions did not differ between the three patient groups, whereas diabetic and metabolic syndrome patients had reduced perivascular fibrosis.</p> <p>Conclusions</p> <p>Impaired diastolic function of type 2 diabetic and metabolic syndrome patients was not dependent on increased myocardial fibrosis, cardiomyocyte hypertrophy, alteration of the myocardial microvascular structure, or increased myocardial expression of Nε-(carboxymethyl)lysine or RAGE. These findings suggest that the increased myocardial fibrosis and AGE expression, cardiomyocyte hypertrophy, and altered microvasculature structure described in diabetic heart disease were a consequence, rather than an initiating cause, of cardiac dysfunction.</p
Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants
BACKGROUND During normal human kidney development, nephrogenesis (the formation of nephrons) is complete by term birth, with the majority of nephrons formed late in gestation. The aim of this study was to morphologically examine nephrogenesis in fetal human kidneys from 20 to 41weeks of gestation. METHODS Kidney samples were obtained at autopsy from 71 infants that died acutely in utero or within 24h after birth. Using image analysis, nephrogenic zone width, the number of glomerular generations, renal corpuscle cross-sectional area and the cellular composition of glomeruli were examined. Kidneys from female and male infants were analysed separately. FINDINGS The number of glomerular generations formed within the fetal kidneys was directly proportional to gestational age, body weight and kidney weight, with variability between individuals in the ultimate number of generations (8 to 12) and in the timing of the cessation of nephrogenesis (still ongoing at 37weeks gestation in one infant). There was a slight but significant (r2=0.30, P=0.001) increase in renal corpuscle cross-sectional area from mid gestation to term in females, but this was not evident in males. The proportions of podocytes, endothelial and non-epithelial cells within mature glomeruli were stable throughout gestation. INTERPRETATION These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age.This study was supported by funding from the National Health and Medical Research Council (NHMRC) (1011136) of Australia and National Institutes of Health (NIH) USA grant 3U01DK094526-04S1 (PI A P McMahon). Author Danica Ryan was the recipient of the Biomedicine Discovery Scholarship from Monash University and author Megan R. Sutherland was supported by a NHMRC CJ Martin Fellowship
Technology enhanced assessment in complex collaborative settings
Building upon discussions by the Assessment Working Group at EDUsummIT 2013, this article reviews recent developments in technology enabled assessments of collaborative problem solving in order to point out where computerised assessments are particularly useful (and where non-computerised assessments need to be retained or developed) while assuring that the purposes and designs are transparent and empowering for teachers and learners. Technology enabled assessments of higher order critical thinking in a collaborative social context can provide data about the actions, communications and products created by a learner in a designed task space. Principled assessment design is required in order for such a space to provide trustworthy evidence of learning, and the design must incorporate and take account of the engagement of the audiences for the assessment as well as vary with the purposes and contexts of the assessment. Technology enhanced assessment enables in-depth unobtrusive documentation or ‘quiet assessment’ of the many layers and dynamics of authentic performance and allows greater flexibility and dynamic interactions in and among the design features. Most important for assessment FOR learning, are interactive features that allow the learner to turn up or down the intensity, amount and sharpness of the information needed for self-absorption and adoption of the feedback. Most important in assessment OF learning, are features that compare the learner with external standards of performance. Most important in assessment AS learning, are features that allow multiple performances and a wide array of affordances for authentic action, communication and the production of artefacts
Multistate Shigellosis Outbreak and Commercially Prepared Food, United States
In 2000, shigellosis traced to a commercially prepared dip developed in 406 persons nationwide. An ill employee may have inadvertently contaminated processing equipment. This outbreak demonstrates the vulnerability of the food supply and how infectious organisms can rapidly disseminate through point-source contamination of a widely distributed food item
Sub-Saharan Africa's Mothers, Newborns, and Children: Where and Why Do They Die?
In the first article in a series on maternal, newborn, and child health in sub-Saharan Africa, Joy Lawn and colleagues outline where and why deaths among mothers and children occur and what known interventions can be employed to prevent these deaths
Sub-Saharan Africa's Mothers, Newborns, and Children: How Many Lives Could Be Saved with Targeted Health Interventions?
As part of the series on maternal, neonatal, and child health in sub-Saharan Africa, Robert Black and colleagues estimated mortality reduction for 42 countries and conclude that the use of local data is needed to prioritize the most effective mix of interventions
Calibration of myocardial T2 and T1 against iron concentration.
BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron.
METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy.
RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001).
CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.
BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans
- …