52 research outputs found

    Viable Influenza A Virus in Airborne Particles Expelled During Coughs Versus Exhalations

    Get PDF
    Background To prepare for a possible influenza pandemic, a better understanding of the potential for the airborne transmission of influenza from person to person is needed. Objectives The objective of this study was to directly compare the generation of aerosol particles containing viable influenza virus during coughs and exhalations. Methods Sixty-one adult volunteer outpatients with influenza-like symptoms were asked to cough and exhale three times into a spirometer. Aerosol particles produced during coughing and exhalation were collected into liquid media using aerosol samplers.The samples were tested for the presence of viable influenza virus using a viral replication assay (VRA). Results Fifty-three test subjects tested positive for influenza A virus. Of these, 28 (53%) produced aerosol particles containing viable influenza A virus during coughing, and 22 (42%) produced aerosols with viable virus during exhalation. Thirteen subjects had both cough aerosol and exhalation aerosol samples that contained viable virus, 15 had positive cough aerosol samples but negative exhalation samples, and 9 had positive exhalation samples but negative cough samples. Conclusions Viable influenza A virus was detected more often in cough aerosol particles than in exhalation aerosol particles, but the difference was not large. Because individuals breathe much more often than they cough, these results suggest that breathing may generate more airborne infectious material than coughing over time. However, both respiratory activities could be important in airborne influenza transmission. Our results are also consistent with the theory that much of the aerosol containing viable influenza originates deep in the lung

    Dendritic Cells Crosspresent Antigens from Live B16 Cells More Efficiently than from Apoptotic Cells and Protect from Melanoma in a Therapeutic Model

    Get PDF
    Dendritic cells (DC) are able to elicit anti-tumoral CD8+ T cell responses by cross-presenting exogenous antigens in association with major histocompatibility complex (MHC) class I molecules. Therefore they are crucial actors in cell-based cancer immunotherapy. Although apoptotic cells are usually considered to be the best source of antigens, live cells are also able to provide antigens for cross-presentation by DC. We have recently shown that prophylactic immunotherapy by DC after capture of antigens from live B16 melanoma cells induced strong CD8+ T-cell responses and protection against a lethal tumor challenge in vivo in C57Bl/6 mice. Here, we showed that DC cross-presenting antigens from live B16 cells can also inhibit melanoma lung dissemination in a therapeutic protocol in mice. DC were first incubated with live tumor cells for antigen uptake and processing, then purified and irradiated for safety prior to injection. This treatment induced stronger tumor-specific CD8+ T-cell responses than treatment by DC cross-presenting antigens from apoptotic cells. Apoptotic B16 cells induced more IL-10 secretion by DC than live B16 cells. They underwent strong native antigen degradation and led to the expression of fewer MHC class I/epitope complexes on the surface of DC than live cells. Therefore, the possibility to use live cells as sources of tumor antigens must be taken into account to improve the efficiency of cancer immunotherapy

    Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings

    Get PDF
    The aim of this study was to evaluate the clinical efficacy as determined by time to progression and response rate (RR) of autologous vitespen (formerly HSPPC-96; Oncophage, Antigenics Inc., New York, NY, USA) with and without interleukin-2 (IL-2; Proleukin: Chiron, Emoryville, CA, USA) in stage IV metastatic renal cell carcinoma (RCC) patients undergoing nephrectomy. Eighty-four patients were enrolled on study, and then underwent nephrectomy and harvest of tumour tissue for use in autologous vaccine manufacture. Initial treatment schedule started approximately 4 weeks after surgery and consisted of six injections: once weekly for 4 weeks, then two injections biweekly (vaccines administered at weeks 1, 2, 3, 4, 6, 8), followed by restaging at or around week 10. Patients who had stable or responsive disease continued to receive vaccine, with four more vaccinations biweekly (at weeks 10, 12, 14, 16). Patients who had progressive disease at week-10 evaluation received four consecutive 5-day-per-week courses of 11 Γ— 106 U of IL-2 subcutaneously (weeks 10, 11, 12, 13), with four doses of vitespen at 2-week intervals (at weeks 10, 12, 14, 16). At the next evaluation (week 18), patients with a complete response received two further cycles of vitespen (with IL-2 if also received during prior cycle) or until vaccine supply was exhausted. Patients with stable disease or partial response repeated their prior cycle of therapy. Disease progressors who had not yet received IL-2 began IL-2 treatment, and progressors who had already received IL-2 came off study. Of 60 evaluable patients, 2 demonstrated complete response (CR), 2 showed partial response (PR), 7 showed stable disease, and 33 patients progressed. Sixteen patients had unconfirmed stable disease. Two patients who progressed on vaccine alone experienced disease stabilisation when IL-2 was added. Treatment with vitespen did not result in a discernable benefit in the majority of patients with metastatic RCC treated in this study. Use in combination with immunoregulatory agents may enhance the efficacy of vitespen

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6Ξ±c) has no IL-10 like activity. However, BmHsp12.6Ξ±c contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6Ξ±c and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6Ξ±c in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6Ξ±c subunit of BmHsp12.6 has significant vaccine potential

    Interferon-Ξ² therapy reduces CD4+ and CD8+ T-cell reactivity in multiple sclerosis

    No full text
    Therapy with interferon-Ξ² (IFN-Ξ²) has well-established clinical effects in multiple sclerosis (MS), albeit the immunomodulatory mechanisms are not fully understood. We assessed the prevalence and functional capacity of CD4+ and CD8+ T cells in healthy donors, and in untreated and IFN-Ξ²-treated MS patients, in response to myelin oligodendrocyte glycoprotein (MOG). The proportion of CD45RO+ memory T cells was higher in MS patients than in healthy donors, but returned to normal values upon therapy with IFN-Ξ². While CD45RO+ CD4+ T cells from all three groups responded to MOG in vitro, untreated patients showed augmented proliferative responses compared to healthy individuals and IFN-Ξ² treatment reduced this elevated reactivity back to the values observed in healthy donors. Similarly, the response of CD45RO+ CD8+ T cells to MOG was strongest in untreated patients and decreased to normal values upon immunotherapy. Overall, the frequency of peripheral CD45RO+ memory T cells ex vivo correlated with the strength of the cellular in vitro response to MOG in untreated patients but not in healthy donors or IFN-Ξ²-treated patients. Compared with healthy individuals, responding CD4+ and CD8+ cells were skewed towards a type 1 cytokine phenotype in untreated patients, but towards a type 2 phenotype under IFN-Ξ² therapy. Our data suggest that the beneficial effect of IFN-Ξ² in MS might be the result of the suppression or depletion of autoreactive, pro-inflammatory memory T cells in the periphery. Assessment of T-cell subsets and their reactivity to MOG may represent an important diagnostic tool for monitoring successful immunotherapy in MS
    • …
    corecore