110 research outputs found

    Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review

    Get PDF
    OBJECTIVE: Post-translational modifications of fibrinogen influence the occurrence and progression of thrombotic diseases. In this systematic review, we assessed the current literature on post-translational modifications of fibrinogen and their effects on fibrin formation and clot characteristics. Approach and Results: A systematic search of Medline, Embase, Cochrane Library, and Web of Science was performed to find studies reporting post-translational modifications of fibrinogen and the effects on clot formation and structure. Both in vitro studies and ex vivo studies using patient material were included. One hundred five articles were included, describing 11 different modifications of fibrinogen. For the best known and studied modifications, conclusions could be drawn about their effect on clot formation and structure. Oxidation, high levels of nitration, and glycosylation inhibit the rate of polymerization, resulting in dense clots with thinner fibers, while low levels of nitration increase the rate of polymerization. Glycation showed different results for polymerization, but f

    Rounding of low serum creatinine levels and consequent impact on accuracy of bedside estimates of renal function in cancer patients

    Get PDF
    To compare glomerular filtration rate measured by technetium-99m ([Tc(99m)]) DTPA clearance with estimated creatinine clearance (CrCl) (Cockcroft and Gault (C&G) method) in patients with serum creatinine (Scr) levels 100 ml min(-1). This work indicates that when bedside estimates of renal function are calculated using the C&G formula actual Scr should be used first to estimate CrCl. If the resultant CrCl is </=100 ml min(-1), then the Scr should be rounded up to 0.06 mmol l(-1) and CrCl recalculated. Further assessment of this approach is warranted in a larger cohort of patients

    Platelet reactivity influences clot structure as assessed by fractal analysis of viscoelastic properties

    Get PDF
    <p>Despite the interwoven nature of platelet activation and the coagulation system in thrombosis, few studies relate both analysis of protein and cellular parts of coagulation in the same population. In the present study, we use matched ex vivo samples to determine the influences of standard antiplatelet therapies on platelet function and use advanced rheological analyses to assess clot formation. Healthy volunteers were recruited following fully informed consent then treated for 7 days with single antiplatelet therapy of aspirin (75 mg) or prasugrel (10 mg) or with dual antiplatelet therapy (DAPT) using aspirin (75 mg) plus prasugrel (10 mg) or aspirin (75 mg) plus ticagrelor (90 mg). Blood samples were taken at day 0 before treatment and at day 7 following treatment. We found that aspirin plus prasugrel or aspirin plus ticagrelor inhibited platelet responses to multiple agonists and reduced P-selectin expression. Significant platelet inhibition was coupled with a reduction in fractal dimension corresponding to reductions in mean relative mass both for aspirin plus prasugrel (−35 ± 16% change, p = 0.04) and for aspirin plus ticagrelor (−45 ± 14% change, p = 0.04). Aspirin alone had no effect upon measures of clot structure, whereas prasugrel reduced fractal dimension and mean relative mass. These data demonstrate that platelets are important determinants of clot structure as assessed by fractal dimension (d<sub><i>f</i></sub>) and that effective platelet inhibition is associated with a weaker, more permeable fibrin network. This indicates a strong association between the therapeutic benefits of antiplatelet therapies and their abilities to reduce thrombus density that may be useful in individual patients to determine the functional relationship between platelet reactivity, eventual clot quality, and clinical outcome. d<sub><i>f</i></sub> could represent a novel risk stratification biomarker useful in individualizing antiplatelet therapies.</p

    Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain

    Get PDF
    Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting

    Polarimetry of binary systems: polars, magnetic CVs, XRBs

    Full text link
    Polarimetry provides key physical information on the properties of interacting binary systems, sometimes difficult to obtain by any other type of observation. Indeed, radiation processes such as scattering by free electrons in the hot plasma above accretion discs, cyclotron emission by mildly relativistic electrons in the accretion shocks on the surface of highly magnetic white dwarfs and the optically thin synchrotron emission from jets can be observed. In this review, I will illustrate how optical/near-infrared polarimetry allows one to estimate magnetic field strengths and map the accretion zones in magnetic Cataclysmic Variables as well as determine the location and nature of jets and ejection events in X-ray binaries.Comment: 26 pages, 16 figures; to be published in Astrophysics and Space Science Library 460, Astronomical Polarisation from the Infrared to Gamma Rays, Editors: Mignani, R., Shearer, A., S{\l}owikowska, A., Zane,
    • …
    corecore