45 research outputs found

    Numerical methods for multiscale inverse problems

    Full text link
    We consider the inverse problem of determining the highly oscillatory coefficient aϵa^\epsilon in partial differential equations of the form −∇⋅(aϵ∇uϵ)+buϵ=f-\nabla\cdot (a^\epsilon\nabla u^\epsilon)+bu^\epsilon = f from given measurements of the solutions. Here, ϵ\epsilon indicates the smallest characteristic wavelength in the problem (0<ϵ≪10<\epsilon\ll1). In addition to the general difficulty of finding an inverse, the oscillatory nature of the forward problem creates an additional challenge of multiscale modeling, which is hard even for forward computations. The inverse problem in its full generality is typically ill-posed and one common approach is to replace the original problem with an effective parameter estimation problem. We will here include microscale features directly in the inverse problem and avoid ill-posedness by assuming that the microscale can be accurately represented by a low-dimensional parametrization. The basis for our inversion will be a coupling of the parametrization to analytic homogenization or a coupling to efficient multiscale numerical methods when analytic homogenization is not available. We will analyze the reduced problem, b=0b = 0, by proving uniqueness of the inverse in certain problem classes and by numerical examples and also include numerical model examples for medical imaging, b>0b > 0, and exploration seismology, b<0b < 0

    Fast wavelet based algorithms for linear evolution equations

    Get PDF
    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions

    Homogenization Model for Aberrant Crypt Foci

    Get PDF
    Several explanations can be found in the literature about the origin of colorectal cancer. There is however some agreement on the fact that the carcinogenic process is a result of several genetic mutations of normal cells. The colon epithelium is characterized by millions of invaginations, very small cavities, called crypts, where most of the cellular activity occurs. It is consensual in the medical community, that a potential first manifestation of the carcinogenic process, observed in conventional colonoscopy images, is the appearance of Aberrant Crypt Foci (ACF). These are clusters of abnormal crypts, morphologically characterized by an atypical behavior of the cells that populate the crypts. In this work an homogenization model is proposed, for representing the cellular dynamics in the colon epithelium. The goal is to simulate and predict, in silico, the spread and evolution of ACF, as it can be observed in colonoscopy images. By assuming that the colon is an heterogeneous media, exhibiting a periodic distribution of crypts, we start this work by describing a periodic model, that represents the ACF cell-dynamics in a two-dimensional setting. Then, homogenization techniques are applied to this periodic model, to find a simpler model, whose solution symbolizes the averaged behavior of ACF at the tissue level. Some theoretical results concerning the existence of solution of the homogenized model are proven, applying a fixed point theorem. Numerical results showing the convergence of the periodic model to the homogenized model are presented.Comment: 26 pages, 4 figure
    corecore