26 research outputs found

    NOVEL TACHYKININS FROM THE BRAIN OF THE SEA LAMPREY, PETROMYZON-MARINUS, AND THE SKATE, RAJA-RHINA

    No full text
    Using radioimmunoassays for mammalian tachykinins, peptides with substance P-like immunoreactivity and neurokinin A-like immunoreactivity were identified in an extract of the brain of the longnose skate, Raja rhina (elasmobranch) but only a peptide with neurokinin A-like immunoreactivity was identified in the brain of the sea lamprey, Petromyzon marinus (agnathan). The primary structure of the skate peptide with substance P-like immunoreactivity (Ala-Lys-His-Asp-Lys-Phe-Tyr-Gly-Leu-Met-NH2) shows one amino acid substitution (Phe3 → His) compared with scyliorhinin I, previously isolated from dogfish brain and gut. The skate neurokinin A-related peptide (His-Lys-Leu-Gly-Ser-Phe-Val-Gly-Leu-Met-NH2) shows two substitutions (Thr3 → Leu and Asp4 → Gly) compared with mammalian neurokinin A. Although the COOH-terminus of the lamprey tachykinin (Arg-Lys-Pro-His-Pro-Lys-Glu-Phe-Val-Gly-Leu-Met-NH2) resembles neurokinin A, the presence of the strongly conserved Lys/Arg-Pro-Xaa-Pro motif at the NH2-terminus of the peptide indicates greater structural similarity with substance P. The additional arginine residue at position 1 in the peptide suggests that the lamprey is utilizing a site of posttranslational processing in the tachykinin precursor that is different from the equivalent site in mammalian and other lower vertebrate preprotachykinin(s).</p

    TACHYKININS WITH UNUSUAL STRUCTURAL FEATURES FROM A URODELE, THE AMPHIUMA, AN ELASMOBRANCH, THE HAMMERHEAD SHARK, AND AN AGNATHAN, THE RIVER LAMPREY

    No full text
    Tachykinins were purified from extracts of gastrointestinal tissues of the urodele, Amphiuma tridactylum (three-toed amphiuma), and the elasmobranch Sphyrna lewini (hammerhead shark), and from the brain of the agnathan Lampetra fluviatilis (river lamprey). The amphiuma substance P (SP) (DNPSVGQFYGLM-NH2) contains 12 amino residues compared with 11 for mammalian SP and lacks the Arg/Lys-Pro-Xaa-Pro motif that is characteristic of NK1 receptor-selective agonists. Lampetra SP (RKPHPKEFVGLM-NH2) is identical to SP from the sea lamprey and the shark SP-related peptide (AKFDKFYGLM-NH2) is identical to dogfish scyliorhinin I. Amphiuma neurokinin A (NKA) (HKDAFIGLM-NH2) and lamprey NKA (HFDEFVGLM-NH2) contain 9 amino acid residues compared with 10 for mammalian NKA. The shark NKA-related peptide (ASGPTQAGIV10GRKRQKGEMF20VGLM-NH2) shows limited structural similarity to mammalian neuropeptide γ and the teleost tachykinin, carassin but contains 24-rather than 21 amino acid residues. The data show that the primary structures of the tachykinins have been very poorly conserved during vertebrate evolution and that pressure has acted only to maintain the functionally important sequence -Phe-Xaa-Gly Leu-Met-NH2 at the COOH-termini of the peptides.</p
    corecore