89 research outputs found
Brief communication:getting Greenland’s glaciers right – a new data set of all official Greenlandic glacier names
Place names in Greenland can be difficult to get right, as they are a mix of
Greenlandic, Danish, and other foreign languages. In addition, orthographies
have changed over time. With this new data set, we give the researcher
working with Greenlandic glaciers the proper tool to find the correct name
for glaciers and ice caps in Greenland and to locate glaciers described in
the historic literature with the old Greenlandic orthography. The data set
contains information on the names of 733 glaciers, 285 originating from the
Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs)
Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland
We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1–2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater
Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987
Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978–1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps
Instability of the Northeast Greenland Ice Stream over the last 45,000 years
The outlet glaciers that comprise the Northeast Greenland Ice Stream (NEGIS) have experienced accelerated retreat in recent years, yet their longterm stability remains unclear. Here, via cosmogenic surface exposure and radiocarbon ages, the authors investigate the stability of the NEGIS for the past 45 kyr
Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland
Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations
Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017
peer reviewedMuch of the research to understand the ice mass changes of Greenland ice sheet (GrIS) has focused on detecting linear rates and accelerations at decadal or longer periods. The transient (short-term, non-secular) mass changes show large variability, and if not properly accounted for, can introduce significant biases into estimates of long-term ice mass loss rates and accelerations. Despite the growing number of geodetic observations, in terms of spatial coverage, types of observables, and the extent of the time series, studies of the transient mass changes over GrIS are lacking. To address this limitation, we apply multi-channel singular spectral analysis to the Gravity Recovery and Climate Experiment (GRACE) mass concentrations (mascon), surface mass balance (SMB) model output, and ice discharge data, to determine the transient mass changes over Greenland over the decade (2007 to 2017). The goal of this analysis is to elucidate the spatio-temporal variability of the ice mass change. For the entire GrIS, both the mascon and SMB transient mass changes are characterized by a sustained mass gain from late 2007 to early 2010, a sustained mass loss from early 2010 to early 2013, and a mass gain from early 2013 to mid-2015. Global Positioning System sites deployed along the coast of Greenland showed uplift from early 2010 to early 2013 and subsidence from early 2013 to 2015, consistent with the corresponding ice mass loss and gain of the entire GrIS. The peak-to-peak amplitude of the transient mass change was estimated to be −294 ± 27 Gt from GRACE mascons and -252 ± 16 Gt from the SMB where the latter value includes the effect of ice discharge. The transient mass change due to ice discharge accounted for less than 10% of the total transient mass change. Our regional assessment reveals that the central-west, southwest, northeast, and southeast regions display similar time-varying patterns as we found for the entire GrIS, but the north and northwest regions show different patterns. Atmospheric circulation anomalies as measured by the Greenland Blocking Index (GBI) are able to explain most of these transient anomalies. More specifically, high-GBI-associated high temperature was one of the main reasons for the transient mass loss of the entire GrIS during 2010-2012 while low GBI can explain the transient mass gain during 2013-2015. Contrasting behaviors of precipitation anomalies in east and west Greenland under abnormally high or low GBI conditions may explain the different patterns of the transient mass change in the northwest and the rest of Greenland
Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age
Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100m between 2003 and 2006, it thickened by more than 50m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40-50m from 1981 to 1998 and major thinning of more than 100m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e. g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss
- …