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Instability of the Northeast Greenland |ce Stream
over the last 45,000 years

Nicolaj K. Larsen"2, Laura B. Levy3, Anders E. Carlson?, Christo Buizert® %, Jesper Olsen®, Astrid Strunk® ?,
Anders A. Bjork® 2° & Daniel S. Skov'

The sensitivity of the Northeast Greenland Ice Stream (NEGIS) to prolonged warm periods is
largely unknown and geological records documenting such long-term changes are needed to
place current observations in perspective. Here we use cosmogenic surface exposure and
radiocarbon ages to determine the magnitude of NEGIS margin fluctuations over the last 45
kyr (thousand years). We find that the NEGIS experienced slow early Holocene ice-margin
retreat of 30-40 ma~", likely as a result of the buttressing effect of sea-ice or shelf-ice. The
NEGIS was ~20-70 km behind its present ice-extent ~41-26 ka and ~7.8-1.2 ka; both periods
of high orbital precession index and/or summer temperatures within the projected warming
for the end of this century. We show that the NEGIS was smaller than present for
approximately half of the last ~45 kyr and is susceptible to subtle changes in climate, which
has implications for future stability of this ice stream.
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reenland Ice Sheet (GrIS) mass loss has doubled since the

beginning of the 20th century!. A prominent feature

of the GrIS is the Northeast Greenland Ice Stream
(NEGIS)??, which constitutes an ~600-km-long ice stream that
drains ~12% of the interior GrIS via three fast-flowing marine-
terminating outlet glaciers: Nioghalvfjerdsfijord Gletscher (NG),
Zachariae Isstrom (ZI), and Storstrommen Gletscher (SG)
(Fig. 1). From 2006 to 2012, the NG and ZI accelerated and
retreated after more than a decade of stability. ZI accelerated
further in 2012 when its ice velocity tripled, losing its residual ice
shelf’. Presently, ZI is rapidly retreating along a reverse-sloped
marine-based bed, whereas NG is retreating slower along an
upward-sloping bed®. In contrast, SG is at present relatively stable
and in a phase of buildup? following its 1978-1984 surge®.
Modeling studies of NEGIS using different warming scenarios
suggest that NG will not change significantly, whereas ZI will
continue fast and unstoppable retreat 30 km upstream of its
current position, contributing ~16.2 mm to global-mean sea-level
rise by 2100 C.E.”. Then the ice margin will stabilize on a topo-
graphic ridge unless frontal summer melt rates exceed 6 m day !,
which would trigger further inland retreat; this is a forcing that is
within the range of the possible Intergovernmental Panel on
Climate Change (IPCC) scenarios’. To assess these modern
observations and modeling scenarios, as well as the possibilities of
future NEGIS collapse, a long-term perspective is urgently needed
to understand the (in)stability of the NEGIS.

During the global Last Glacial Maximum (LGM; ~26-19 ka),
the GrIS reached the continental shelf in Northeast Greenland,
but it has been contentious whether it reached the shelf edge
~250-350 km from the present ice margin or remained on the
inner shelf (Fig. 1a)°. High-resolution multibeam swath
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bathymetry and shallow seismic data from the shelf offshore of
the NEGIS show a number of glacial landforms including mega-
scale glacial lineations suggesting that the ice sheet margin
extended to the shelf edge in Northeast Greenland®~'2. The age of
the landforms is, however, poorly constrained due to a lack of
marine sediment cores from the area. It is assumed that they were
formed during the LGM as they appear fresh and are not draped
with significant sediment cover. Farther north at 81°N, the
reduction in ice-rafted debris and lower sedimentation rates in
marine sediment cores suggest that deglaciation from the shelf
began ~20 ka'®, whereas the shelf areas at Kejser Franz Josef
Fjord (72°N) and Scoresby Sund (70°N) ~700-1000 km farther
south experienced regional deglaciation ~17-19 ka®!4-17,
Radiocarbon dates of postglacial marine shells from the coastline
outside NEGIS indicate deglaciation around 9.7-9.1 ka; the later
deglaciation of this area compared to adjacent areas to the north
and south has been used to suggest more extensive glaciation
reaching the shelf edge'®. However, these '4C dates are only
minimum-limiting ages, which are often significantly younger
than '“Be ages of deglaciation in Greenland!®. These limitations
highlight the need for better age constraints to resolve the long-
term ice-margin fluctuations of NEGIS.

Here we combine cosmogenic surface exposure ages (:°Be) on
glacial boulders with radiocarbon dates (14C) from reworked
marine shells in moraines to reconstruct the last 45 kyr of NEGIS-
margin fluctuations (see Methods). In addition, we investigate the
climate forcings that may drive long-term ice-margin variability
on these time scales. We find that the NEGIS experienced slow
early Holocene ice-margin retreat of 30-40 ma~! from the outer
coast to the present ice margin, likely as a result of the buttressing
effect of sea or shelf ice. We furthermore show that the NEGIS
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Fig. 1 Field location of the Northeast Greenland Ice Stream. a Map with minimum and maximum LGM ice extent8, and velocity map of the inland ice®®.
Orange circles are sites with existing "C dates reworked in Little Ice Age moraines or from raised marine deposits presently dammed by NEGIS27:28. b
Inset map with bed topography, merged from existing topographic and bathymetric data with mass conservation (beneath grounded ice) and gravity

inversion (beneath floating ice and open ocean)’C. Outline of glacier margin is based on GIMP data’’. The observed and modeled ice front and grounding
line positions in 2014 C.E. and under maximum melting scenarios in 2100 C.E.”. New cosmogenic surface exposure ages (yellow circles) in ka (thousand
years ago) from outer coast and proximal to the present ice margin in Northeast Greenland 78°N to 80°N. Red circles mark new '#C dates of reworked

shell fragments from a moraine on Lambert Land
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was smaller than present ~41-26 ka and ~7.8-1.2 ka, or
approximately half of the last ~45 kyr as a result of air and ocean
temperature forcings similar to or slightly higher than present.

Results

The timing of early Holocene ice retreat. Cosmogenic exposure
dating is a widely used method to constrain the timing of
deglaciation in Greenland!®=2, In this study, we use twenty-eight
19Be boulder ages to constrain the NEGIS retreat from the
coastline to the present-day ice margin (60-100 km) in Northeast
Greenland (77.4-79.4°N) during the last deglaciation (Fig. 1a, b).
By assuming that the deglaciation of the outer coast to present ice
margin was largely synchronous within the study site, we calcu-
lated the mean and standard error of the mean for °Be ages at
the coast and present ice margin (Methods and Supplementary
Table 1 and Table 2). At the three coastal sites on Bourbon Qer,
Storgen, and Kap Amélie, ten samples were dated. After
excluding one outlier, we calculated a mean 1%Be age of 11.7 + 0.4
(0.6) ka (uncertainty in parentheses includes the production rate
uncertainty). Adjacent to the present ice margins at Blase,
Lambert Land, ZI, Sendre Mellemland, and Bloch Nunatakker we
dated eighteen samples. With one outlier excluded, we obtained a
mean deglaciation age of 9.3+0.2 (0.4) ka. Our 'Be ages
demonstrate that the deglaciation of the outer coast to present ice
margin, a distance of 60-100 km, was completed within ~2.4 kyr
at an average retreat rate of 30-40 m a~l,

The response of the NEGIS to a warmer climate. Radiocarbon
dating of reworked marine material (shells or whale bones) in
moraines is a method often used to infer times when the ice
margins in Greenland were further inland than at present®®~2%,
We have combined new and existing '*C dates from NEGIS’s
three marine terminating outlet glaciers in the study area (Fig. 1a,
b). Overall, there are two periods where the *C dates show that
the NEGIS was smaller than present during Marine Isotope Stage
3 (MIS 3) and the Holocene (Figs. 2 and 3). We present eight new
14C dates from Lambert Land adjacent to ZI ranging from 41.1 +
0.5 to 26.3+0.2 ka (Fig. 3b, Supplementary Table 3) that show
that ZI retreated at least ~20 km inland from its 2014 position
oi)ening up for marine conditions farther inland. Four existing
14C dates from moraines adjacent to SG show that it was smaller
than present at least 37.0 £ 1.0 to 28.4 + 0.3 ka and open marine
conditions extended at least ~40km farther inland relative to
present®®. Based on the distribution of C ages from ZI and SG,
it can be concluded that the NEGIS was continually retracted at
least 20-40 km behind the present ice extent prior to ~41 ka and
until after ~26 ka. Previously published radiocarbon dates of
reworked shells and whale bones in Little Ice Age moraines and
raised marine deposits likewise suggest that NEGIS was ~20-70
km farther inland than today ~7.8-1.2 ka, before it advanced to
its Little Ice Age maximum in the 19th century®”?%,

Discussion

Our new '“Be ages demonstrate that deglaciation of the outer
coast to the present ice margin occurred between 11.7 £ 0.6 and
9.3 +0.4 ka. This is ~2 kyr older than the oldest recorded '*C
dates of ~9.7 ka from the outer coast!®. The timing of early
Holocene NEGIS retreat from the coast to its current extent
generally coincides with both increased surface air and subsurface
ocean temperatures (Fig. 2a-d). Summer surface air temperature
reconstructed by merged ice-core data and climate models shows
an abrupt rise in temperature at the Younger Dryas termination,
coeval with the 1Be ages presented here for initial ice retreat
from the coastline, followed by gradual warming to peak tem-
peratures ~10-9 ka (Fig. 2d)?%3! In the Fram Strait, subsurface
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ocean warming is recorded slightly later ~10.8-10.1 ka, at a rate
of ~0.5 °C per century and a peak Holocene temperature of ~6 °C
at ~10.1 ka®? (Fig. 2c). We suggest that the combined effect of
insolation-driven atmospheric/oceanic warming and abrupt
atmospheric warming at the end of the Younger Dryas likely
triggered NEGIS coastal to inland retreat.

The mean “Be ages suggest that the deglaciation from the
outer coast to the present ice margin occurred at a retreat rate of
30-40 ma~ . This estimate is slower than early Holocene retreat
rates of ~100 ma~! for Jakobshavn Isbre in West Greenland®®
and ~80 ma~! for Helheim Glacier in Southeast Greenland?!. It
is striking that the marine-based parts of NEGIS only experienced
moderate rates of ice retreat compared to other major GrIS outlet
glaciers?1>, We attribute this to the buttressing effect of sea ice
or shelf ice®®, which was hinged on to islands off the coast in
Northeast Greenland (Fig. 1) until ~9.5 ka3433,

The 'C ages of reworked shells demonstrate that the NEGIS
was retracted ~20-40 km during MIS 3 from ~41 to ~26 ka when
ice-core data indicate that the mean-annual temperature was
generally as cold as the LGM and accumulation rates (and
therefore ice flow velocities) were 4-5 times slower than during
the Holocene®® (Fig. 3g, h). However, as glaciers respond pri-
marily to summer air temperatures37, we estimate local summer
air temperatures at our site during MIS 3 using a multiple-
regression method (see Methods). Approximately 41-26 ka esti-
mated summer temperatures were ~6-8°C warmer than the
LGM primarily because of higher boreal summer insolation, but
~8-12°C colder than the preindustrial period (Fig. 3c). The
combination of relatively mild summers and low snow accumu-
lation rates (Fig. 3¢, g) seems to be a plausible explanation for the
retracted NEGIS margin during MIS 3. The 1*C dates from MIS 3
also provide a maximum age constraint for when the NEGIS
began its advance toward its LGM position and show that the
GrIS in this sector was larger than present after ~26 ka until 9.3 +
0.4 ka (uncertainty including the production rate uncertainty),
when the 1%Be ages indicate that the areas in front of the present
ice margin were again deglaciated. The timing of maximum LGM
extent of NEGIS agrees with a Northeast Greenland marine
rec1(3)rd that places the ice margin on the continental shelf ~26-20
ka™>.

Published !“C dates of marine shells and whale bones from the
left-lateral margin of NG show that the floating ice margin was
smaller than present extent and reached a minimum of at least 70
km behind its present extent ~7.8-4.6 ka®’. At SG, reworked
shells in Little Ice Age moraines suggest that it was smaller than
present ~5.4-1.2 ka®®, The timing of the retracted ice margin of
the NEGIS outlet glaciers ~7.8-1.2 ka generally agrees with a
smaller than present GrIS extent during the mid-Holocene
thermal maximum seen in southern Greenland®. The timing of
retracted NEGIS also coincides with local chironomid-based
temperature maxima ~8-5 ka from Store Koldeway in Northeast
Greenland®® and warm subsurface temperatures in Fram Strait>?
(Fig. 2¢, e). However, it is also concurrent with relatively high
accumulation rates®®, suggesting that the forcing of the mid-
Holocene NEGIS retreat differs from that of MIS 3. Both periods
of retracted NEGIS margins occurred during, or just after, periods
of high orbital precession index (Fig. 3d-f), supporting the notion
that precession forcing dominates the ice-sheet response on
orbital time scales.

We compare our results with a recent state-of-the art modeling
study, which suggests that the NG is difficult to destabilize when
compared to the ZI and that bed topography plays a critical role
in determining ice-margin responses to ocean warming’. The
three-dimensional ice-sheet model is forced by constant surface
mass balance and variable ocean forcing. It predicts that NG will
likely keep its current configuration with the grounding line and
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Fig. 2 Ice fluctuations and climate variability the last 15 kyr. a Reconstruction of ice-margin fluctuations based on b '°Be ages with external uncertainties
from outer coast (dark gray) and outside the Little Ice Age moraine (black), and C dates from raised marine deposits presently dammed by NEGIS up to
70 km upstream the present ice margin at NG; Blasg (blue)?’ and Midgaardsormen (pink)27, and 14C dates of reworked shells in Little Ice Age moraines at
Sendre Mellemland (green)?’, and at SG (orange)?®. Vertical gray bars are the mean and standard error of the outer (older) and inner (younger) '°Be ages
with the production rate uncertainty included. Vertical light blue bar is when the NEGIS is smaller than present. The early Holocene ice-retreat coincides
with € peak subsurface temperatures based on planktic foraminiferal fauna assemblages (SST100)32 and d peak summer temperature (JJA) (pink) at 79°N
with RCP 2.6 (light blue), 4.5 (blue), and 8.5 scenarios (dark blue)3'. e The timing of maximum mid-Holocene ice retreat coincides with local chironomid-
based temperature maxima at Duck (black) and Hjort (grey) lakes on Store Koldeway in Northeast Greenland3. f Ice core 8'80 record from NGRIP72

4 NATURE COMMUNICATIONS | (2018)9:1872 | DOI: 10.1038/541467-018-04312-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Shelf a -—=
@ 4 N
g
Outer coast -{ $ / ~250-350 km N
S / \
Present f 4 A -
g ~20-40km _ _ v 07
5 \km, — 80
Smaller than |2 -
present o . |
b 4 HOH | 79
(0]
T =
L 2Z
-
L L 78
Cc
167 el |- -
- — bl b L LE I I

;

Summer temperature anomaly 79°N
(°C)
& °
I I |
‘D ;
5

d
_16 — 245
\ 24
>
480 - 235 5
z g
b — | et
R 460 3 g
59 L 205
§§ 440 o0
) L
" <
£ 420 — 0.03
= f—ow )
> 400 N 2
— 001
0 @
[0
[$)
— —0.01 @
o
025 — g L —0.02
0.2 A
= 0.15 r,/f
z h

Accumulation rate

(m

o ¢

o ©

a =

I

W W

(o2 N

NGRIP §'80
(%2)

-40
-42
—44
MIS3 LGM Holocene
[ I I I I I I I I ]
40.000 30.000 20.000 10.000 0

Age (years before present)

Fig. 3 Ice and climate fluctuations of the Northeast Greenland Ice Stream for the last 45 kyr. a Reconstruction of ice-margin fluctuations based on b '°Be
ages with external uncertainties from outer coast (dark gray) and outside the Little Ice Age moraine (black), and *C dates from raised marine deposits
presently dammed by NEGIS up to 70 km upstream the present ice margin at NG; Blasg (blue)?” and Midgaardsormen (pink)?’, and "C dates of reworked
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(older) and inner (younger) '°Be ages with the production rate uncertainty included. Vertical light blue bars are when the NEGIS is smaller than present. ¢
Reconstructed summer temperature (pink) with RCP 2.6 (light blue), 4.5 (blue), and 8.5 scenarios (dark blue) at 79°N3' and a summer temperatures
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rate at NEEM3®. h Ice core 8'80 record from NGRIP72

| (2018)9:1872 | DOI: 10.1038/541467-018-04312-7 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

the ice front close to its present location by 2100 C.E., even when
the model is forced with high basal-melt rates and frontal-melt
rates (Fig. 1b). Conversely, ZI is modeled to be more sensitive,
with the simulations showing ~30 km ice-margin retreat before
stabilization on a topographic ridge by 2100 C.E. unless frontal
summer melt rates exceed 6 m day~!. This would trigger further
inland retreat and the oceanic forcing is within the range of
possible future scenarios’. The geologic data clearly demonstrate
that both NG and ZI, as well as SG, retreated behind their present
extents during the Holocene. These observations suggest that the
model underestimates the sensitivity of NEGIS, and particularly
the NG, to increased oceanic forcing. However even when the
grounding line and ice velocity are stable, once the ice margin
reaches a topographic ridge neither NG nor ZI reach a steady
state and still lose mass over the entire duration of the simula-
tion’. They could eventually retreat further inland on a longer
time scale as demonstrated by the geological record.

In conclusion, we show that the NEGIS experienced major ice-
margin fluctuations over the last ~45 kyr, ranging from ~250 to
350 km of ice advance beyond its present position during the
LGM to ~20-40 km ice retreat behind its present extent during
MIS 3 and ~70 km during the mid-Holocene. During the last ~45
kyr, the NEGIS was smaller than present at least half of the time.
These observations present two scenarios that can drive NEGIS
retreat within its current extent. Over the early Holocene, the
instability of the largely marine-based NEGIS margin was trig-
gered by a combination of air and ocean temperatures similar to
today or within the projected scenarios (RCP4.5 to RCP8.5) for
the end of this century (Fig. 2d). In contrast, the NEGIS retraction
during MIS 3 was potentially due to a combination of lower
accumulation/ice flow, elevated incident shortwave radiation, and
attendant summer air temperature warming. Our results
demonstrate that the NEGIS has responded sensitively to past
climatic changes and that its current extent is an anomaly rather
than the norm for the last ~45 kyr. These new geologic obser-
vations suggest that the NEGIS will continue to undergo ice-
margin retreat and lose mass given the ongoing Arctic warming*’
combined with the topographic setting of large deep fjords*! that
allow subsurface water to reach and destabilize the ice front>’.

Methods

Study area. The study area comprises the northern part of the East Greenland
Caledonides and the bedrock is primarily composed of crystalline basement except
for a few places on Lambert Land and north of Nioghalvfjerdsfjorden, where it is
overlain by Paleoprotozoic or Proterozoic sediments*2. Topographic relief ranges
between 0 and 500 m but locally mountains are up to ~1000 m high. The landscape
is characterized by selective linear erosion; signs of glacial erosion are significant,
particularly at lower elevations. During the LGM, the ice sheet advanced on to the
continental shelf in Northeast Greenland**~*5, but it has been contentious whether
it reached the shelf edge ~250-350 km from the present ice margin or remained on
the inner shelf (Fig. 1a)®. High-resolution multibeam swath bathymetry and
shallow seismic data from the shelf offshore NEGIS show a number of glacial
landforms including mega-scale glacial lineations, sufggesting that the ice extended
all the way the shelf edge in Northeast Greenland®~'?. According to the existin§
14C-based deglaciation chronology, the outer coast was deglaciated ~9.7-9.5 ka®’.
Following the deglaciation, the land was inundated with marine limits of 40-60 m
above sea level?S.

Cosmogenic exposure dating. In 2015 and 2016 we conducted fieldwork using
helicopter and twin otter plane. We selected field sites using aerial and satellite
imagery. Most samples were collected from boulders perched on ice scoured
bedrock, except for three samples from Kap Amelié collected from boulders on
drift and on Lambert Land where we collected two boulder samples on a moraine
outside the Little Ice Age moraine (Fig. 1b). We aimed at sampling glacially
abraded boulders on bedrock (Supplementary Fig. 1), with boulders >1 m in height
and diameter to reduce the influence of snow cover on our resulting ages*’. We
measured shielding, and recorded the latitude and longitude and elevation using a
handheld GPS with an uncertainty of <10 m. The boulder samples were collected
using a rock saw. All samples were prepared using carrier “PHE1601” and were
measured using the beryllium standard 07KNSTD® at Aarhus AMS Centre
(AARAMS). We used the CRONUS-Earth online calculator?’, the Arctic
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production rate®®, and time invariant scaling of Lal/Stone®">>? to calculate sample
ages (Supplementary Table 1, Table 2). In addition, we used a rock density of 2.7 g
cm ™3 and made no correction for potential snow cover, and surface erosion. The
study area has undergone §laciostatic uplift since the deglaciation of ~40 m at Blase
and ~60 m at Hovgaard @, and the sample elevation at the time of collection does
not reflect its time-averaged sample elevation history. We calculated sample-
specific elevation corrections®® and found that the uplift corrections are within 1-
sigma of the AMS sample uncertainties similar to or lower than what have been
calculated for West Greenland where the postglacial uplift was larger’%°. As the
uplift histog in Northeast Greenland is less well constrained compared to West
Greenland*® and the vertical uncertainty of the GPS measurement is of the same
order as the uplift correction, we present ’Be ages without correcting for glacio-
static uplift, similar to most other “Be studies from Greenland!®2%-2%2353:54 we
note that the lack of this correction does not significantly change our 'Be ages or
our interpretations. Individual 1°Be ages are presented with their 1-sigma analytical
uncertainties, which include the uncertainty in the blank correction. When we
compare our “Be ages with other climate records we include the production rate
uncertainty using the following formula:

Uncertainty =

\/ (10 std error of mean)®+( 1°Be age x production rate uncertainty)

Uncertainty of 1"Be ages, outer coast =

\/(0.4)2 + (11.7 % 0.037)* = 0.6 kyr,

where 0.4 = 1o standard error of the mean (in kyr), 11.7 = mean 10Be age (in ka);
0.037 = the uncertainty associated with the Arctic production rate®® and “St”
scaling®152,

Uncertainty of 1°Be ages, present ice margin =

(0.2)% + (9.3 % 0.037)* = 0.4kyr,

where 0.2 = 10 standard error of the mean (in kyr); 9.3 = mean 10Be age (in ka),
0.037 = the uncertainty associated with the Arctic production rate®® and “St”
scaling®1-52,

We excluded two outliers based on the most general knowledge of the regions
glacial history that are older than the LGM (GL1519, GL1545) and most likely
contain 1%Be inherited from a previous period of exposure?’.

Radiocarbon dating. A number of shell fragments were collected on the surface of
a moraine outside the Little Ice Age moraine on Lambert Land. The shell fragments
were identified to species level, when possible. Only large pieces from a single
specimen were used for dating. In the laboratory, shell fragments were cleaned and
leached using HCI removing c. 25% of the outer shell. Around 10 mg of material
was used for the '*C analysis; all contained enough carbon for AMS radiocarbon
measurement. All radiocarbon ages have been calibrated into calendar years using
IntCal13> and a reservoir age of 550 years (AR= 150)°° in Oxcal 4.3%7. The 14C
ages are reported with 2-sigma uncertainty (Supplementary Table 3).

Temperature reconstruction. Greenland ice cores provide detailed records on the
timing and magnitude of past mean-annual temperature change. However, GrIS
mass loss occurs during the summer months’®, and therefore summer (JJA)
temperatures are more relevant than mean-annual temperatures when considering
past margin positions. For the last 22 kyr Greenland ice core 8'°N-based tem-
perature reconstructions® were merged with climate model simulations®*-62 to
generate Greenland-wide, seasonally resolving temperature reconstructions®!.
Supplementary Fig. 2a shows the reconstructed mean-annual (ANN), summer
(JJA), and winter (DJF) temperatures at our study location (79°N, 20°W). Coupled
ocean atmosphere GCM simulations are not available through MIS 3; therefore the
same approach cannot be used to investigate summer temperatures during that
time period. Instead, we rely on a multiple regression approach in which it is
assumed that three key forcings dominate the Greenland temperature evolution:
AMOC strength, greenhouse gas radiative forcing, and local orbital forcing.
Summer temperature at the site (Tjj) is then given by:

Pco 79°N
280Z+a3>< o5, (1)

Tjja = a;x AMOC + a,x 5.351n

where AMOC denotes the estimated strength of the overturning in Sv, pco, is the
atmospheric CO, dry mixing ratio in ppm, CDI?;Nis the average solar insolation at
79°N north during the months June, July, and August, and a, through a5 are linear
scaling coefficients. The CO, mixing ratio is converted to radiative forcing using
the approach by ref. %3, with a pre-industrial reference concentration of 280 ppm.
All forcings are shown in Supplementary Figs. 2B-D. In reconstructing Tjja, we use
a multi-ice core po, compilation®, and insolation values calculated following ref.
95, The AMOC strength is the most uncertain of the three forcings and is recon-
structed as follows. We start from the Greenland Summit®®®7 §!80 record (average
of GRIP and GISP2 8§80 records) corrected for mean ocean 8'30%8, and convert it
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to site (mean annual) temperature using an effective isotope sensitivity of & = 0.29
%o K~1%°. Using the logic underlying Eq. 1, we remove the effect of CO, forcing
(b, =3.05 Km2 W) and insolation (b; = 0.0481 Km2 W ! sensitivity to local
summer insolation) from the GISP2 temperatures, where the stated (annual mean)
sensitivities were obtained from the single-forcing deglacial GCM simulations of
ref. ©1, in which greenhouse gas and orbital forcings were applied separately. It is
then assumed that remaining temperature variability is due solely to AMOC
variability, which we estimate using a sensitivity (mean annual) of b, = 1.07 £ 0.25
K Sv~1, which optimizes the correlation to the reconstruction by ref. 3!, as shown
in Supplementary Fig. 2B. The NEGIS MIS 3 summer temperature anomaly is then
estimated with Eq. 1 using coefficients a; =0.238 £ 0.1 K Sv i a,=376+15
Km? WL, and a3 = 0.137 + 0.03 Km? W~1; these coefficients are found using
multiple regression analysis on the 0-22ka NEGIS JJA reconstruction; the coeffi-
cients are in good agreement with those found from the single-forcing coupled
GCM experiments of ref. ®!. The MIS 3 JJA reconstruction is shown in Supple-
mentary Fig. 2e, together with an uncertainty envelope that was found by adding all
stated uncertainties in quadrature. We want to emphasize the large uncertainty
inherent in trying to reconstruct both the AMOC and NEGIS summer temperature
based on regression techniques—the resulting values should be considered an
order-of-magnitude estimate.

Data availability. The data that support the findings of this study are available in
the supplementary information or it can be acquired from the corresponding
author on request.
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