108 research outputs found

    Daily Based Morgan–Morgan–Finney (DMMF) Model : A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Get PDF
    In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 ). Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations

    Modeling the Impact of Climate and Vegetation on Fire Regimes in Mountain Landscapes

    Get PDF
    Assessing the long-term dynamics of mountain landscapes that are influenced by large-scale natural and anthropogenic disturbances and a changing climate is a complex subject. In this study, a landscape-level ecological model was modified to this end. We describe the structure and evaluation of the fire sub-model of the new landscape model LandClim, which was designed to simulate climate-fire-vegetation dynamics. We applied the model to an extended elevational gradient in the Colorado Front Range to test its ability to simulate vegetation composition and the strongly varying fire regime along the gradient. The simulated sequence of forest types along the gradient corresponded to the one observed, and the location of ecotones lay within the range of observed values. The model captured the range of observed fire rotations and reproduced realistic fire size distributions. Although the results are subject to considerable uncertainty, we conclude that LandClim can be used to explore the relative differences of fire regimes between strongly different climatic condition

    Do small-grain processes matter for landscape scale questions? Sensitivity of a forest landscape model to the formulation of tree growth rate

    Get PDF
    Process-based forest landscape models are valuable tools for testing basic ecological theory and for projecting how forest landscapes may respond to climate change and other environmental shifts. However, the ability of these models to accurately predict environmentally-induced shifts in species distributions as well as changes in forest composition and structure is often contingent on the phenomenological representation of individual-level processes accurately scaling-up to landscape-level community dynamics. We use a spatially explicit landscape forest model (LandClim) to examine how three alternative formulations of individual tree growth (logistic, Gompertz, and von Bertalanffy) influence model results. Interactions between growth models and landscape characteristics (landscape heterogeneity and disturbance intensity) were tested to determine in what type of landscape simulation results were most sensitive to growth model structure. We found that simulation results were robust to growth function formulation when the results were assessed at a large spatial extent (landscape) and when coarse response variables, such as total forest biomass, were examined. However, results diverged when more detailed response variables, such as species composition within elevation bands, were considered. These differences were particularly prevalent in regions that included environmental transition zones where forest composition is strongly driven by growth-dependent competition. We found that neither landscape heterogeneity nor the intensity of landscape disturbances accentuated simulation sensitivity to growth model formulation. Our results indicate that at the landscape extent, simulation results are robust, but the reliability of model results at a finer resolution depends critically on accurate tree growth function

    Classification of rare land cover types: Distinguishing annual and perennial crops in an agricultural catchment in South Korea

    Get PDF
    Many environmental data are inherently imbalanced, with some majority land use and land cover types dominating over rare ones. In cultivated ecosystems minority classes are often the target as they might indicate a beginning land use change. Most standard classifiers perform best on a balanced distribution of classes, and fail to detect minority classes. We used the synthetic minority oversampling technique (smote) with Random Forest to classify land cover classes in a small agricultural catchment in South Korea using modis time series. This area faces a major soil erosion problem and policy measures encourage farmers to replace annual by perennial crops to mitigate this issue. Our major goal was therefore to improve the classification performance on annual and perennial crops. We compared four different classification scenarios on original imbalanced and synthetically oversampled balanced data to quantify the effect of smote on classification performance. smote substantially increased the true positive rate of all oversampled minority classes. However, the performance on minor classes remained lower than on the majority class. We attribute this result to a class overlap already present in the original data set that is not resolved by smote. Our results show that resampling algorithms could help to derive more accurate land use and land cover maps from freely available data. These maps can be used to provide information on the distribution of land use classes in heterogeneous agricultural areas and could potentially benefit decision making

    A stochastic individual based model for the growth of a stand of Japanese knotweed including mowing as a management technique

    Full text link
    Invasive alien species are a growing threat for environment and health. They also have a major economic impact, as they can damage many infrastructures. The Japanese knotweed (Fallopia japonica), present in North America, Northern and Central Europe as well as in Australia and New Zealand, is listed by the World Conservation Union as one of the world's worst invasive species. So far, most models have dealt with how the invasion spreads without management. This paper aims at providing a model able to study and predict the dynamics of a stand of Japanese knotweed taking into account mowing as a management technique. The model we propose is stochastic and individual-based, which allows us taking into account the behaviour of individuals depending on their size and location, as well as individual stochasticity. We set plant dynamics parameters thanks to a calibration with field data, and study the influence of the initial population size, the mean number of mowing events a year and the management project duration on mean area and mean number of crowns of stands. In particular, our results provide the sets of parameters for which it is possible to obtain the stand eradication, and the minimal duration of the management project necessary to achieve this latter

    Disappearing refuges in time and space: how environmental change threatens species coexistence

    Get PDF
    Understanding the impacts of environmental changes on species survival is a major challenge in ecological research, especially when shifting from single- to multispecies foci. Here, we apply a spatially explicit two-species simulation model to analyze the effects of geographic range shifting and habitat isolation on different coexistence mechanisms. The model explicitly considers dispersal, local competition, and growth on a single resource. Results highlight that both range shifting and habitat isolation severely impact coexistence. However, the strength of these impacts depends on the underlying coexistence mechanisms. Neutrally coexisting species are particularly sensitive to habitat isolation, while stabilized coexistence through overcompensatory density regulation is much more sensitive to range shifting. We conclude that, at the community level, the response to environmental change sensitively depends on the underlying coexistence mechanisms. This suggests that predictions and management recommendations should consider differences between neutral versus stabilized community structures whenever possibl

    Adding structure to land cover - using fractional cover to study animal habitat selection

    Get PDF
    Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis.We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio?temporal scales.ResultsWe analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump?shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges. ConclusionThe application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer
    corecore