40 research outputs found

    Design and transition of an emergency e-learning pathology course for medical students — evaluation of a novel course concept

    Get PDF
    Background: Around the world, the emergency brought about by the COVID-19 pandemic forced medical schools to create numerous e-learning supplements to provide instruction during this crisis. The question now is to determine a way in which to capitalize on this momentum of digitization and harness the medical e-learning content created for the future. We have analyzed the transition of a pathology course to an emergency remote education online course and, in the second step, applied a flipped classroom approach including research skills training. Methods: In the summer semester of 2020, the pathology course at the Technical University of Munich was completely converted to an asynchronous online course. Its content was adapted in winter 2021 and incorporated into a flipped classroom concept in which research skills were taught at the same time. Results: Screencasts and lecture recordings were the most popular asynchronous teaching formats. Students reported developing a higher interest in pathology and research through group work. The amount of content was very challenging for some students. Conclusion: Flipped classroom formats are a viable option when using pre-existing content. We recommend checking such content for technical and didactic quality and optimizing it if necessary. Content on research skills can be combined very well with clinical teaching content

    Loss of SATB2 Occurs More Frequently Than CDX2 Loss in Colorectal Carcinoma and Identifies Particularly Aggressive Cancers in High-Risk Subgroups

    Get PDF
    BACKGROUND Special AT-rich sequence-binding protein 2 (SATB2) has emerged as an alternative immunohistochemical marker to CDX2 for colorectal differentiation. However, the distribution and prognostic relevance of SATB2 expression in colorectal carcinoma (CRC) have to be further elucidated. METHODS SATB2 expression was analysed in 1039 CRCs and correlated with clinicopathological and morphological factors, CDX2 expression as well as survival parameters within the overall cohort and in clinicopathological subgroups. RESULTS SATB2 loss was a strong prognosticator in univariate analyses of the overall cohort (p \textless 0.001 for all survival comparisons) and in numerous subcohorts including high-risk scenarios (UICC stage III/high tumour budding). SATB2 retained its prognostic relevance in multivariate analyses of these high-risk scenarios (e.g., UICC stage III: DSS: p = 0.007, HR: 1.95), but not in the overall cohort (DSS: p = 0.1, HR: 1.25). SATB2 loss was more frequent than CDX2 loss (22.2% vs. 10.2%, p \textless 0.001) and of higher prognostic relevance with only moderate overlap between SATB2/CDX2 expression groups. CONCLUSIONS SATB2 loss is able to identify especially aggressive CRCs in high-risk subgroups. While SATB2 is the prognostically superior immunohistochemical parameter compared to CDX2 in univariate analyses, it appears to be the less sensitive marker for colorectal differentiation as it is lost more frequently

    Neuroendocrine Differentiation in Conventional Colorectal Adenocarcinomas: Incidental Finding or Prognostic Biomarker?

    Get PDF
    Background Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with "true" MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation.Simple Summary Colorectal MANECs are highly aggressive carcinomas defined by a distinct neuroendocrine morphology and positivity for synaptophysin in the neuroendocrine component. It is unclear whether a neuroendocrine differentiation in conventional adenocarcinomas without a suggestive morphology is of clinical relevance. We tested 1002 conventional colorectal carcinomas with a non-neuroendocrine morphology for synaptophysin expression and correlated the results with clinicopathological characteristics as well as patient survival and compared the survival characteristics of synaptophysin expression groups to those of true MANECs. We found no survival differences between synaptophysin expression groups within conventional colorectal adenocarcinomas. MANECs, on the other hand, showed significantly worse survival characteristics. Our data suggest that synaptophysin expression in conventional colorectal adenocarcinomas is of minor prognostic relevance and that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs. Abstract Background: Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods: We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results: Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with “true” MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions: Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation

    pT3 colorectal cancer revisited: a multicentric study on the histological depth of invasion in more than 1000 pT3 carcinomas—proposal for a new pT3a/pT3b subclassification

    Get PDF
    BACKGROUND: Pathological TNM staging (pTNM) is the strongest prognosticator in colorectal carcinoma (CRC) and the foundation of its post-operative clinical management. Tumours that invade pericolic/perirectal adipose tissue generally fall into the pT3 category without further subdivision. METHODS: The histological depth of invasion into the pericolic/perirectal fat was digitally and conventionally measured in a training cohort of 950 CRCs (Munich). We biostatistically calculated the optimal cut-off to stratify pT3 CRCs into novel pT3a (≤3 mm)/pT3b (>3 mm) subgroups, which were then validated in two independent cohorts (447 CRCs, Bayreuth/542 CRCs, Mainz). RESULTS: Compared to pT3a tumours, pT3b CRCs showed significantly worse disease-specific survival, including in pN0 vs pN+ and colonic vs. rectal cancers (DSS: P < 0.001, respectively, pooled analysis of all cohorts). Furthermore, the pT3a/pT3b subclassification remained an independent predictor of survival in multivariate analyses (e.g. DSS: P < 0.001, hazard ratio: 4.41 for pT3b, pooled analysis of all cohorts). While pT2/pT3a CRCs showed similar survival characteristics, pT3b cancers remained a distinct subgroup with dismal survival. DISCUSSION: The delineation of pT3a/pT3b subcategories of CRC based on the histological depth of adipose tissue invasion adds valuable prognostic information to the current pT3 classification and implementation into current staging practices of CRC should be considered

    Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes.

    Get PDF
    The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUTlevels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUTin driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfβ-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.The work was supported by the German Cancer Consortium Joint Funding Program, the Helmholtz Gemeinschaft (PCCC Consortium), the German Research Foundation (SFB1243; A13/A14) and the European Research Council (ERC CoG number 648521)

    Neuroendocrine neoplasms of the pancreas: diagnosis and pitfalls

    No full text
    Common to neuroendocrine neoplasms of the pancreas is their expression of synaptophysin, chromogranin A, and/or INSM1. They differ, however, in their histological differentiation and molecular profile. Three groups can be distinguished: well-differentiated neuroendocrine neoplasms (neuroendocrine tumors), poorly differentiated neuroendocrine neoplasms (neuroendocrine carcinomas), and mixed neuroendocrine-non-neuroendocrine neoplasms. However, the expression of synaptophysin and, to a lesser extent, also chromogranin A is not restricted to the neuroendocrine neoplasms, but may also be in a subset of non-neuroendocrine epithelial and non-epithelial neoplasms. This review provides the essential criteria for the diagnosis of pancreatic neuroendocrine neoplasms including diagnostic clues for the distinction of high-grade neuroendocrine tumors from neuroendocrine carcinomas and an algorithm avoiding diagnostic pitfalls in the delineation of non-neuroendocrine neoplasms with neuroendocrine features from pancreatic neuroendocrine neoplasms

    An analysis of 130 neuroendocrine tumors G3 regarding prevalence, origin, metastasis, and diagnostic features

    No full text
    Limited data exist on high-grade neuroendocrine tumors (NETs G3) which represent a new category among neuroendocrine neoplasms (NEN). We analyzed NETs G3 in a consultation series regarding prevalence, origin, metastasis, and diagnostic problems. Based on the WHO classification of digestive system tumors, 130 NETs G3 (9%) were identified in 1513 NENs. NET G3 samples were more often obtained from metastatic sites (69%) than NET G1/G2 samples (24%). NET G3 metastases presented most frequently in the liver (74%) and originated from the pancreas (38/90, 42%), followed by the lung (9%), ileum (7%), stomach (3%), rectum (1%), and rare sites (2%) such as the prostate and breast. The primaries remained unknown in 15%. NETs G3 had a median Ki67 of 30% that distinguished them from NECs (60%), though with great overlap. The expression of site-specific markers, p53, Rb1, and SST2 was similar in NETs G3 and NETs G1/G2, except for p53 and Rb1 which were abnormally expressed in 8% and 7% of liver metastases from NET G3 but not from NET G1/G2. NETs G3 were frequently referred as NECs (39%) but could be well distinguished from NECs by normal p53 (92% versus 21%) and Rb1 expression (93% versus 41%) expression. In conclusion, NETs G3 are frequently discovered as liver metastases from pancreatic or pulmonary primaries and are often misinterpreted as NEC. p53 and Rb1 are powerful markers in the distinction of NET G3 from NEC. Rarely, carcinomas from non-digestive, non-pulmonary organs with neuroendocrine features may present as NET G3

    Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2

    No full text
    We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs

    The Use of PDX1 DNA Methylation to Distinguish Two Subtypes of Pancreatic Neuroendocrine Neoplasms with Different Prognoses

    No full text
    Pancreatic neuroendocrine neoplasms (pNENs) account for approximately 5% of all pancreatic tumors; thus, they constitute the second most common tumor type in the pancreas [...
    corecore