301 research outputs found

    Does the stellar disc flattening depend on the galaxy type?

    Get PDF
    We analyze the dependence of the stellar disc flatness on the galaxy morphological type using 2D decomposition of galaxies from the reliable subsample of the Edge-on Galaxies in SDSS (EGIS) catalogue. Combining these data with the retrieved models of the edge-on galaxies from the Two Micron All Sky Survey (2MASS) and the Spitzer Survey of Stellar Structure in Galaxies (S4^4G) catalogue, we make the following conclusions: (1) The disc relative thickness z0/hz_0/h in the near- and mid-infrared passbands correlates weakly with morphological type and does not correlate with the bulge-to-total luminosity ratio B/TB/T in all studied bands. (2) Applying an 1D photometric profile analysis overestimates the disc thickness in galaxies with large bulges making an illusion of the relationship between the disc flattening and the ratio B/TB/T. (3) In our sample the early-type disc galaxies (S0/a) have both flat and "puffed" discs. The early spirals and intermediate-type galaxies have a large scatter of the disc flatness, which can be caused by the presence of a bar: barred galaxies have thicker stellar discs, on average. On the other hand, the late-type spirals are mostly thin galaxies, whereas irregular galaxies have puffed stellar discs.Comment: 17 pages, 17 figures, accepted for publication in MNRA

    WSRT observations and surface photometry of two unusual spiral galaxies

    Full text link
    We discuss the results of a mass decomposition of two spiral galaxies, NGC 6824 and UGC 11919. In a previous analysis of the Hyperleda catalog, the galaxies were identified as having a peculiar dynamical M/LM/L. The aim of this study is to confirm or disprove the preliminary findings, indicating a non-standard stellar initial mass function (IMF) for the galaxies. The surface photometry in B, V, and R bands was carried out with the Apache Point 0.5-m telescope and the \ion{H}{I} data cubes were obtained with the Westerbork Synthesis Radio Telescope (WSRT). Photometric profiles were decomposed into bulge and exponential disk components. Using the obtained \ion{H}{I} data cubes, rotation curves of both galaxies were constructed. Employing the photometric profiles, the mass distribution of the galaxies was decomposed into mass components: bulge, stellar disk, gas, and pseudo-isothermal dark halo. We conclude that NGC 6824 possesses a stellar disk with mass-to-light ratio (M/LB)disk=2.5(M/L_B)_{\rm disk} = 2.5, in agreement with its color (B−V)0(B-V)_0. On the contrary, UGC 11919 appears to have a very lightweight disk. Its dynamically estimated mass corresponds to a low stellar disk mass-to-light ratio (M/LB)disk≈0.5(M/L_B)_{\rm disk} \approx 0.5. Under standard assumptions, this ratio does not agree with the relatively red color of the disk, while a bottom light stellar initial mass function is needed to explain the observations.Comment: 14 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    Polar-bulge galaxies

    Full text link
    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.Comment: 8 pages, 3 figure
    • …
    corecore