558 research outputs found

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    Complete Semantics to empower Touristic Service Providers

    Full text link
    The tourism industry has a significant impact on the world's economy, contributes 10.2% of the world's gross domestic product in 2016. It becomes a very competitive industry, where having a strong online presence is an essential aspect for business success. To achieve this goal, the proper usage of latest Web technologies, particularly schema.org annotations is crucial. In this paper, we present our effort to improve the online visibility of touristic service providers in the region of Tyrol, Austria, by creating and deploying a substantial amount of semantic annotations according to schema.org, a widely used vocabulary for structured data on the Web. We started our work from Tourismusverband (TVB) Mayrhofen-Hippach and all touristic service providers in the Mayrhofen-Hippach region and applied the same approach to other TVBs and regions, as well as other use cases. The rationale for doing this is straightforward. Having schema.org annotations enables search engines to understand the content better, and provide better results for end users, as well as enables various intelligent applications to utilize them. As a direct consequence, the region of Tyrol and its touristic service increase their online visibility and decrease the dependency on intermediaries, i.e. Online Travel Agency (OTA).Comment: 18 pages, 6 figure

    DBpedia Spotlight: Shedding Light on the Web of Documents

    Get PDF
    Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to congure the annotations to their specic needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation condence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use

    TechMiner: Extracting Technologies from Academic Publications

    Get PDF
    In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, researchers are adding new entities to these repositories to develop a richer model of the scholarly domain. In this paper, we introduce TechMiner, a new approach, which combines NLP, machine learning and semantic technologies, for mining technologies from research publications and generating an OWL ontology describing their relationships with other research entities. The resulting knowledge base can support a number of tasks, such as: richer semantic search, which can exploit the technology dimension to support better retrieval of publications; richer expert search; monitoring the emergence and impact of new technologies, both within and across scientific fields; studying the scholarly dynamics associated with the emergence of new technologies; and others. TechMiner was evaluated on a manually annotated gold standard and the results indicate that it significantly outperforms alternative NLP approaches and that its semantic features improve performance significantly with respect to both recall and precision

    Semantic Web Standards and Ontologies for Legislative Drafting Support

    Full text link

    Crowdsourcing Linked Data on listening experiences through reuse and enhancement of library data

    Get PDF
    Research has approached the practice of musical reception in a multitude of ways, such as the analysis of professional critique, sales figures and psychological processes activated by the act of listening. Studies in the Humanities, on the other hand, have been hindered by the lack of structured evidence of actual experiences of listening as reported by the listeners themselves, a concern that was voiced since the early Web era. It was however assumed that such evidence existed, albeit in pure textual form, but could not be leveraged until it was digitised and aggregated. The Listening Experience Database (LED) responds to this research need by providing a centralised hub for evidence of listening in the literature. Not only does LED support search and reuse across nearly 10,000 records, but it also provides machine-readable structured data of the knowledge around the contexts of listening. To take advantage of the mass of formal knowledge that already exists on the Web concerning these contexts, the entire framework adopts Linked Data principles and technologies. This also allows LED to directly reuse open data from the British Library for the source documentation that is already published. Reused data are re-published as open data with enhancements obtained by expanding over the model of the original data, such as the partitioning of published books and collections into individual stand-alone documents. The database was populated through crowdsourcing and seamlessly incorporates data reuse from the very early data entry phases. As the sources of the evidence often contain vague, fragmentary of uncertain information, facilities were put in place to generate structured data out of such fuzziness. Alongside elaborating on these functionalities, this article provides insights into the most recent features of the latest instalment of the dataset and portal, such as the interlinking with the MusicBrainz database, the relaxation of geographical input constraints through text mining, and the plotting of key locations in an interactive geographical browser

    GraphQL schema generation for data-intensive web APIs

    Get PDF
    Sharing data as a (non-)commercial asset on the web is typically performed using an Application Programming Interface (API). Although Linked Data technologies such as RDF and SPARQL enable publishing and accessing data on the web, they do not focus on mediated and controlled web access that data providers are willing to allow. Thus, recent approaches aim at providing traditional REST API layer on top of semantic data sources. In this paper, we propose to take advantage of the new GraphQL framework that, in contrast to the dominant REST API approach, exposes an explicit data model, described in terms of the so-called GraphQL schema, to enable precise retrieving of only required data. We propose a semantic metamodel of the GraphQL Schema. The metamodel is used to enrich the schema of semantic data and enable automatic generation of GraphQL schema. In this context, we present a prototype implementation of our approach and a use case with a real-world dataset, showing how lightly augmenting its ontology to instantiate our metamodel enables automatic GraphQL schema generation.Peer ReviewedPostprint (author's final draft

    Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains

    Get PDF
    Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism
    corecore