8 research outputs found

    NON-WOVEN NANOFIBER CHITOSAN/PEO MEMBRANES OBTAINED BY ELECTROSPINNING

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The present work focused on the preparation and morphological characterization of chitosan-based nanofiber membranes, aiming at applications in medical and pharmacological areas. Membranes with nanofiber diameters ranging from 50 - 300 nm were prepared from polymer solutions through the electrospinning process. To stabilize the process, it was necessary to use poly(ethylene oxide) (PEO), which is a biocompatible synthetic polymer. Pure chitosan solutions, as well as chitosan and PEO solution blends, were characterized by their rheological behavior, conductivity, and surface tension measurements. The electrospun fiber thermal characteristics and crystalline structures were investigated through thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Scanning electron microscopy images (SEM) were used for the morphological evaluations of the membranes. The addition of PEO to the chitosan solutions improved their electrical conductivity, surface tension and viscosity, greatly favoring the electrospinning process. Thus, membranes with 80% chitosan could be electrospun.3115768Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [p. 140146/2008-3

    Effects of extrusion conditions on the properties of recycled poly(ethylene terephthalate)/nanoclay nanocomposites prepared by a twin-screw extruder

    No full text
    The effects of extrusion conditions on the mechanical properties of recycled poly(ethylene terephthalate) (rPET)/clay nanocomposites were studied. Nanocomposites of recycled PET containing 2.5 and 5.0 wt % of montmorillonite modified with organophilic quaternary ammonium salt (DELLITE 67G) were prepared by melt compounding using a corotating twin-screw type extruder at two different screw rotation speeds: 250 and 150 rpm. The highest value of Young's modulus was found for low screw rotation speed (150 rpm). Morphological analysis using transmission electron microscopy (TEM) revealed the presence of fully exfoliated clay platelets in samples prepared at 150 rpm. It was concluded that the screw rotation speed should be optimized when preparing recycled PET/clay nanocomposites by melt compounding. (C) 2008 Wiley Periodicals, Inc.10842252225

    Effect of Clay Content and Speed Screw Rotation on the Crystallization and Thermal Behaviors of Recycled PET/Clay Nanocomposites

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Nanocomposites of recycled poly(ethylene terephthalate) (rPET) containing 2.5 wt% and 5.0 wt% of montmorillonite modified with organophilic quaternary ammonium salt (DELLITE 67G) were prepared by melt compounding using a co-rotating twin-screw type extruder with two organoclay contents were used: 2.5 wt% and 5.0 wt% and were prepared using two different rotation speeds: 150 and 250 rpm. Thermal characterization (analysis) of the nanocomposites was performed using differential scanning calorimetry (DSC) analysis. The results from DSC measurements showed that the addition of organoclay affects recycled PET's crystallization for two screw rotation speeds studies. The nucleating effect of organoclay was investigated. Morphological analysis using Transmission Electron Microscopy (TEM) revealed the presence of fully exfoliated clay platelets in samples prepared at 150 rpm.9638833890Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [03/01892-0
    corecore