289 research outputs found
Atomistic Simulations of Basal Dislocations Interacting with MgAl Precipitates in Mg
The mechanical properties of Mg-Al alloys are greatly influenced by the
complex intermetallic phase MgAl, which is the most dominant
precipitate found in this alloy system. The interaction of basal edge and
30 dislocations with MgAl precipitates is studied by
molecular dynamics and statics simulations, varying the inter-precipitate
spacing (), and size (), shape and orientation of the precipitates. The
critical resolved shear stress to pass an array of precipitates
follows the usual proportionality. In all cases but the
smallest precipitate, the dislocations pass the obstacles by depositing
dislocation segments in the disordered interphase boundary rather than shearing
the precipitate or leaving Orowan loops in the matrix around the precipitate.
An absorbed dislocation increases the stress necessary for a second dislocation
to pass the precipitate also by absorbing dislocation segments into the
boundary. Replacing the precipitate with a void of identical size and shape
decreases the critical passing stress and work hardening contribution while an
artificially impenetrable MgAl precipitate increases both. These
insights will help improve mesoscale models of hardening by incoherent
particles.Comment: 13 pages with 9 figures and 2 tables. Supplementary materia
Influence of intrinsic strain on irradiation induced damage: the role of threshold displacement and surface binding energies
International audienc
Atomistic simulations of focused ion beam machining of strained silicon
International audienc
Systematic Atomic Structure Datasets for Machine Learning Potentials: Application to Defects in Magnesium
We present a physically motivated strategy for the construction of training
sets for transferable machine learning interatomic potentials. It is based on a
systematic exploration of all possible space groups in random crystal
structures, together with deformations of cell shape, size, and atomic
positions. The resulting potentials turn out to be unbiased and generically
applicable to studies of bulk defects without including any defect structures
in the training set or employing any additional Active Learning. Using this
approach we construct transferable potentials for pure Magnesium that reproduce
the properties of hexagonal closed packed (hcp) and body centered cubic (bcc)
polymorphs very well. In the process we investigate how different types of
training structures impact the properties and the predictive power of the
resulting potential
A new method for microscale cyclic crack growth characterization from notched microcantilevers and application to single crystalline tungsten and a metallic glass
The lifetime of most metals is limited by cyclic loads, ending in fatigue
failure. The progressive growth of cracks ends up in catastrophic failure. An
advanced method is presented for the determination of cyclic crack growth on
the microscale using a nanoindenter, which allows the characterization of >
10,000 loading cycles. It uses focused ion beam fabricated notched
microcantilevers. The method has been validated by cyclic bending metallic
glass and tungsten microcantilevers. The experiments reveal a stable crack
growth during the lifetime of both samples. The metallic glass shows less
plasticity due to the absence of dislocations, but shows shearing caused by the
deformation. The crack growth rates determined in the tests follow Paris' power
law relationship. The results are reliable, reproducible and comparable with
macroscopic setups. Due to the flexibility of the method, it is suitable for
the characterization of specific microstructural features, like single phases,
grain boundaries or different grain orientations
The influence of pre-deformation on the fracture toughness of chromium, studied by microcantilever bending
Cr is bcc metals, which has a high melting point and high strength. However, its fracture toughness at room temperature is low. This is due to their rather high ductile to brittle transition temperature. At room temperature the fracture toughness is limited by dislocation mobility or by the inability to activate nucleation sources. While this behavior is well characterized for W, there are only few studies for Cr.
Please click Additional Files below to see the full abstract
Deformation mechanisms of twinned nanoparticles and nanowires
The plastic deformation of nanoscale metallic specimens has recently attracted a lot of interest due to the reported changes of deformation mechanisms with reduced size. Similarly, the interaction of dislocations with twin boundaries has received lots of attention in the context of the ultrahigh strength and ductility of nanotwinned metals. Here, we present experiments and atomistic simulations of compression test on twinned gold nanoparticles to study dislocation processes and -storage in nanosized volumes and dislocation-twin interaction mechanisms and compare them with the deformation behavior of twinned silver and gold nanowires.
Compression experiments were performed on triangular shaped, facetted particles using a nanoindenter with a flat punch tip. During compression along the [111] direction, all particles assume a characteristic asymmetric âmushroomâ shape, which has not been reported in the case of uniaxially compressed single crystalline Au nanoparticles. Post-mortem TEM-analysis in cross-sectional and plan-view geometry reveal the storage of full dislocations. Dislocations were also observed on the (111) plane parallel to the twin plane, which should not experience any resolved shear stress during compression.
Molecular Dynamics simulations of Au nanoparticles of same shapes as in the experiments were performed using different types of indenters, boundary conditions, strain rates and potentials. The processes of dislocation nucleation, interaction with the twin boundary, dislocation-dislocation reactions, cross-slip and dislocation escape through the free surfaces are studied in detailed and analyzed in terms of the stress state. Comparison with the experimental microstructure of the compressed particles allows to draw conclusions about the dominating dislocation processes during the deformation of the twinned nanoparticles. In particular, the presence of dislocations on the (111) planes provides indirect evidence for transmission of dislocations through the twin boundary onto {100}-type planes. The dislocation â twin interaction mechanisms are compared to single and multitwinned gold and silver nanowires. The results highlight the importance of boundary conditions and internal interfaces on the nucleation, escape, storage and interactions of dislocations in nano-objects
- âŠ