5 research outputs found

    Dense Molecular Gas in the Nearby Low Metallicity Dwarf Starburst Galaxy IC 10

    Full text link
    Dense molecular gas and star formation are correlated in galaxies. The effect of low metallicity on this relationship is crucial for interpreting observations of high redshift galaxies, which have lower metallicities than galaxies today. However, it remains relatively unexplored because dense molecular gas tracers like HCN and HCO+ are faint in low metallicity systems. We present Green Bank Telescope observations of HCN(1-0) and HCO+(1-0) on giant molecular cloud (34pc) scales in the nearby low metallicity (12+log(O/H)=8.212+\log({\rm O/H})=8.2) starburst IC 10 and compare them to those in other galaxies. We detect HCN and HCO+ in one and three of five pointings, respectively. The IHCN/IHCO+I_{\rm HCN}/I_{\rm HCO+} values are within the range seen in other galaxies, but are most similar to those seen in other low metallicity sources and in starbursts. The detections follow the fiducial LIRL_{\rm IR}-LHCNL_{\rm HCN} and LIRL_{\rm IR}-LHCO+L_{\rm HCO+} relationships. These trends suggest that HCN and HCO+ can be used to trace dense molecular gas at metallicities of 1/4 ZZ_\odot, to first order. The dense gas fraction is similar to that in spiral galaxies, but lower than that in U/LIRGs. The dense molecular gas star formation efficiency, however, is on the upper end of those in normal galaxies and consistent with those in U/LIRGs. These results suggest that the CO and HCN/HCO+ emission occupy the same relative volumes as at higher metallicity, but that the entire emitting structure is reduced in size. Dense gas mass estimates for high redshift galaxies may need to be corrected for this effect.Comment: Accepted to Ap

    ARO_project_AGU2022_LSTM_Mississippi_River

    No full text

    ALMA-LEGUS. I. The Influence of Galaxy Morphology on Molecular Cloud Properties

    No full text
    We present a comparative study of the molecular gas in two galaxies from the Legacy ExtraGalactic UV Survey (LEGUS) sample: barred spiral NGC 1313 and flocculent spiral NGC 7793. These two galaxies have similar masses, metallicities, and star formation rates, but NGC 1313 is forming significantly more massive star clusters than NGC 7793, especially young massive clusters (10 ^4 M _⊙ ). Using Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) observations of the two galaxies with the same sensitivity and resolution (13 pc), we directly compare the molecular gas in these two similar galaxies to determine the physical conditions responsible for their large disparity in cluster formation. By fitting size–line width relations for the clouds in each galaxy, we find that NGC 1313 has a higher intercept than NGC 7793, implying that its clouds have higher kinetic energies at a given size scale. NGC 1313 also has more clouds near virial equilibrium than NGC 7793, which may be connected to its higher rate of massive cluster formation. However, these virially bound clouds do not show a stronger correlation with young clusters than with the general cloud population. We find surprisingly small differences between the distributions of molecular cloud populations in the two galaxies, though the largest of those differences is that NGC 1313 has higher surface densities and lower freefall times

    ALMA-LEGUS. II. The Influence of Subgalactic Environments on Molecular Cloud Properties

    No full text
    We compare the molecular cloud properties in subgalactic regions of two galaxies, barred spiral NGC 1313, which is forming many massive clusters, and flocculent spiral NGC 7793, which is forming significantly fewer massive clusters despite having a similar star formation rate to NGC 1313. We find that there are larger variations in cloud properties between different regions within each galaxy than there are between the galaxies on a global scale, especially for NGC 1313. There are higher masses, line widths, pressures, and virial parameters in the arms of NGC 1313 and the center of NGC 7793 than in the interarm and outer regions of the galaxies. The massive cluster formation of NGC 1313 may be driven by its greater variation in environment, allowing more clouds with the necessary conditions to emerge, although no one parameter seems primarily responsible for the difference in star formation. Meanwhile NGC 7793 has clouds that are as massive and have as much kinetic energy as the clouds in the arms of NGC 1313, but have densities and pressures more similar to those in the interarm regions and so are less inclined to collapse and form stars. The cloud properties in NGC 1313 and NGC 7793 suggest that spiral arms, bars, interarm regions, and flocculent spirals each represent distinct environments with regard to molecular cloud populations. We see surprisingly little difference in surface density between the regions, suggesting that the differences in surface densities frequently seen between arm and interarm regions in lower-resolution studies are indicative of the sparsity of molecular clouds, rather than differences in their true surface density
    corecore