14 research outputs found

    The effect of periprosthetic bone loss on the failure risk of tibial total knee arthroplasty

    Get PDF
    The effect of long-term periprosthetic bone loss on the process of aseptic loosening of tibial total knee arthroplasty (TKA) is subject to debate. Contradicting studies can be found in literature, reporting either bone resorption or bone formation before failure of the tibial tray. The aim of the current study was to investigate the effects of bone resorption on failure of tibial TKA, by simulating clinical postoperative bone density changes in finite element analysis (FEA) models and FEA models were created of two tibiae representing cases with good and poor initial bone quality which were subjected to a walking configuration and subsequently to a traumatic stumbling load. Bone failure was simulated using a crushable foam model incorporating progressive yielding. Repetitive loading under a level walking load did not result in failure of the periprosthetic bone in neither the good nor poor bone quality tibia at the baseline bone densities. When applying a stumble load, a collapse of the tibial reconstruction was noticed in the poor bone quality model. Incorporating postoperative bone loss led to a significant increase of the failure risk, particularly for the poor bone quality model in which subsidence of the tibial component was substantial. Our results suggest bone loss can lead to an increased risk of a collapse of the tibial component, particularly in case of poor bone quality at the time of surgery. The study also examined the probability of medial or lateral subsidence of the implant and aimed to improve clinical implications. The FEA model simulated plastic deformation of the bone and implant subsidence, with further validation required via mechanical experiments.</p

    The primary stability of a cementless PEEK femoral component is sensitive to BMI:A population-based FE study

    Get PDF
    The use of polyetheretherketone (PEEK) for cementless femoral total knee arthroplasty (TKA) components is of interest due to several potential advantages, e.g. the use in patients with metal hypersensitivity. Additionally, the stiffness of PEEK closer resembles the stiffness of bone, and therefore, peri-prosthetic stress-shielding may be avoided. When introducing a new implant material for cementless TKA designs, it is important to study its effect on the primary fixation, which is required for the long-term fixation. Finite element (FE) studies can be used to study the effect of PEEK as implant material on the primary fixation, which may be dependent on patient factors such as age, gender and body weight index (BMI). Therefore, the research objectives of this study were to investigate the effect of PEEK vs cobalt-chrome (CoCr) and patient characteristics on the primary fixation of a cementless femoral component. 280 FE models of 70 femora were created with varying implant material and gait and squat activity. Overall, the PEEK models generated larger peak micromotions than the CoCr models. Distinct differences were seen in the micromotion distributions between the PEEK and CoCr models for both the gait and squat models. The micromotions of all femoral models significantly increased with BMI. Neither gender nor age of the patients had a significant effect on the micromotions. This population study gives insights into the primary fixation of a cementless femoral component in a cohort of FE models with varying implant material and patient characteristics.</p

    Development of a crushable foam model for human trabecular bone

    Get PDF
    Finite element (FE) simulations can be used to evaluate the mechanical behavior of human bone and allow for quantitative prediction of press-fit implant fixation. An adequate material model that captures post-yield behavior is essential for a realistic simulation. The crushable foam (CF) model is a constitutive model that has recently been proposed in this regard. Compression tests under uniaxial and confined loading conditions were performed on 59 human trabecular bone specimens. Three essential material parameters were obtained as a function of bone mineral density (BMD) to develop the isotropic CF model. The related constitutive rule was implemented in FE models and the results were compared to the experimental data. The CF model provided an accurate simulation of uniaxial compression tests and the post-yield behavior of the stress-strain was well-matched with the experimental results. The model was able to reproduce the confined response of the bone up to 15% of strain. This model allows for simulation of the mechanical behavior of the cellular structure of human bone and adequately predicts the post-yield response of trabecular bone, particularly under uniaxial loading conditions. The model can be further improved to simulate bone collapse due to local overload around orthopaedic implants

    Finite element wear prediction using adaptive meshing at the modular taper interface of hip implants

    Get PDF
    The use of modular components in total hip arthroplasty introduced an additional interface with the potential for fretting and corrosion to occur. Fretting and corrosion at this interface have been reported as a potential cause of early failure of the implant system. Using finite element (FE) analyses the mechanics at the taper junction can be studied. However, most FE studies are based on a single load condition and do not take geometry changes over time into account. Therefore, in this study an FE routine was developed, in which adaptations to the implant geometry are made to account for material removal during the fretting process. Material removal was simulated based on Archard's Law, incorporating contact pressure, micromotions and a wear factor which used input from in vitro fretting tests. A wear factor of 2.7*10−5 mm3/N mm was used to match the FE predicted volumetric wear to the measured experimental volumetric wear of 0.79 mm3 after 10 million cycles. The maximum experimental wear depth found was 30.5 ± 17 µm, while the FE predicted a maximum wear depth of 27 µm. The adaptive meshing method has delivered results that are more similar to the experimental test data in comparison to the results from modelling a single cycle without adaptive meshing

    The Effect of Patient-Related Factors on the Primary Fixation of PEEK and Titanium Tibial Components: A Population-Based FE Study

    No full text
    Polyetheretherketone (PEEK) is of interest as implant material for cementless tibial total knee arthroplasty (TKA) components due to its potential advantages. One main advantage is that the stiffness of PEEK closely resembles the stiffness of bone, potentially avoiding peri-prosthetic stress-shielding. When introducing a new implant material for cementless TKA designs, it is essential to study its effect on the primary fixation. The primary fixation may be influenced by patient factors such as age, gender, and body mass index (BMI). Therefore, the research objectives of this finite element (FE) study were to investigate the effect of material (PEEK vs. titanium) and patient characteristics on the primary fixation (i.e., micromotions) of a cementless tibial tray component. A total of 296 FE models of 74 tibiae were created with either PEEK or titanium material properties, under gait and squat loading conditions. Overall, the PEEK models generated larger peak micromotions than the titanium models. Differences were seen in the micromotion distributions between the PEEK and titanium models for both the gait and squat models. The micromotions of all tibial models significantly increased with BMI, while gender and age did not influence micromotions
    corecore