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A B S T R A C T   

Finite element (FE) simulations can be used to evaluate the mechanical behavior of human bone and allow for 
quantitative prediction of press-fit implant fixation. An adequate material model that captures post-yield 
behavior is essential for a realistic simulation. The crushable foam (CF) model is a constitutive model that has 
recently been proposed in this regard. Compression tests under uniaxial and confined loading conditions were 
performed on 59 human trabecular bone specimens. Three essential material parameters were obtained as a 
function of bone mineral density (BMD) to develop the isotropic CF model. The related constitutive rule was 
implemented in FE models and the results were compared to the experimental data. The CF model provided an 
accurate simulation of uniaxial compression tests and the post-yield behavior of the stress-strain was well- 
matched with the experimental results. The model was able to reproduce the confined response of the bone 
up to 15% of strain. This model allows for simulation of the mechanical behavior of the cellular structure of 
human bone and adequately predicts the post-yield response of trabecular bone, particularly under uniaxial 
loading conditions. The model can be further improved to simulate bone collapse due to local overload around 
orthopaedic implants.   

1. Introduction 

Trabecular bone is a spongy, porous material with a cellular struc
ture. It is present at the end of all long bones, such as the femur, tibia, 
and humerus, in the vertebral bodies of the spine, and in flat and 
irregular bones such as the pelvic bones [1]. Bone mineral density 
(BMD), age, sex, geometry, and anatomical site all have an influence on 
the material properties of this type of bone [2]. Mechanical properties of 
trabecular bone play an essential role in the biomechanical response of 
the whole skeleton. 

The prediction of the biomechanical response of trabecular bone can 
be used to study the fracture risk or bone collapse, but also the press-fit 
fixation of orthopaedic implants. The mechanical response of the peri- 
prosthetic bone has a direct effect on implant fixation [3]. Already 
during implantation, plastic deformation of trabecular bone may occur, 
but also due to local overload of implants, such as the collapse of a tibial 
tray or unilateral knee prosthesis [4,5]. For the development and design 
of new devices, it is imperative to understand these nonlinear in
teractions between bone and implant. Nonlinear finite element (FE) 
analysis can be used to study the situations mentioned earlier. However, 
an adequate material model that captures the post-yield behavior of the 

trabecular bone is necessary for accurate results [6,7]. 
Several material models have been used to replicate the biome

chanical response of human bone. The post-yield behavior in these 
models mainly has been based either on a softening von Mises (sVM) 
criterion, a Drucker–Prager (DP) criterion, a Mohr–Coulomb (MC) cri
terion, or a crushable foam (CF) model [8]. 

An ideal plastic model based on a sVM yield criterion was developed 
by Keyak et al. [9] for femoral fracture prediction in case of metastatic 
lesions. This model was further improved by Keaveny et al. [10] by 
introducing tension-compression strength asymmetry in the elas
tic-perfectly-plastic material model. In 2006, a DP model was used to 
simulate the compression and tension behavior of cortical bone, which 
was later modified for trabecular bone compression [11]. Also, an 
extended DP model was calibrated in 2009 by Mullins et al. [12] to 
capture the post-yield behavior of the bone, considering a 
pressure-dependent yield effect. An MC criterion was used by Tai et al. 
[13] and Wang et al. [14] to investigate bone strength based on bovine 
cortical bone and canine cancellous bone, respectively. 

A CF model with isotropic hardening was developed by Deshpande 
and Fleck [15]; they introduced and calibrated a hardening equation 
based on hydrostatic and uniaxial compression data, defining an 
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elliptical yield surface for metallic foams. 
Kelly and McGarry [16] demonstrated the CF model’s application for 

bovine trabecular bone and rigid polyurethane foams [16]. They showed 
that this type of continuum constitutive model could be implemented for 
the simulation of bone behavior. The CF model is better able to incor
porate the effect of pressure dependency on the yield surface than the DP 
or MC criterion [16]. The identification of a CF parameters with constant 
values for human femoral bones and vertebral bodies was performed in a 
study by Kinzl et al. [17] based on the yield data of whole bones. They 
captured the mechanical response of the bones until the ultimate yield 
point. In 2019, Schulze et al. performed a study in which a CF model was 
calibrated for synthetic bones [18]. It was shown that the CF plasticity 
model provided accurate predictions of acetabular cup deformation. 

To develop the CF models for trabecular bone, one needs to obtain 
the mechanical response in two loading configurations: uniaxial 
compression and confined compression. As Zhao et al. reported in 2018 
[19], mechanical testing of human bone under uniaxial conditions has 
been widely investigated over the years by numerous authors. Keyak 
et al. and Keaveny et al. [6, 20-22] performed comprehensive studies on 
the prediction of post-failure behavior of bone in uniaxial configura
tions. In the study by Kelly and McGarry [16], the effect of hydrostatic 
pressure on post-failure behavior of bovine trabecular bone was inves
tigated, which was demonstrated to be of importance under physiolog
ical loading conditions. However, there is a limited number of studies 
that focus on the effect of hydrostatic pressure on post-yield behavior of 
human trabecular bone. Therefore, the goal of this study was to deter
mine the post-yield response of human trabecular bone under uniaxial 
and hydrostatic conditions. 

The present study comprises an experimental and numerical evalu
ation of the mechanical response of human trabecular bone. In the first 
phase, through experimental investigations, we determined the required 
parameters for the CF model (Young’s modulus, yield stress, and Pois
son’s ratio). We examined trabecular bone samples taken from human 
cadaveric tibias in two configurations, uniaxial and confined compres
sion. In the second phase of the project, the CF model was implemented 
in FE analyses. A numerical simulation was performed to predict the 
mechanical behavior (elastic and plastic) of bone under both uniaxial 
and confined compression. Then, the FE results were assessed in com
parison to the experimental data. 

2. Material and methods 

This study is divided into three main parts: 1-experimental testing of 
bone specimens under uniaxial and confined compression, 2-identifica
tion of material parameters for the CF model based on the mechanical 
testing data, and 3-FE simulations based on quantitative computed to
mography (QCT) and comparison of the results with the experimental 
data. 

2.1. Experimental testing 

2.1.1. Specimen preparation 
Sixty-two cylindrical bone samples taken from the proximal site of 8 

fresh-frozen human cadaveric tibias were examined. There were three 
female and five male bones, and the age range was from 62 to 93 years, 
with an average of 69 years. The proximal part of all tibias, including the 
menisci and condyles, were removed parallel to the plateau (Fig. 1a). 
Cylindrical samples were taken from the trabecular bone sites (Fig. 1b). 
QCT scans of the drilled bones were captured with a voxel size of 0.4 ×
0.2 × 0.2 mm (Toshiba Medical Systems, Tokyo, Japan − 120 kV 260 
mA) while a solid calibration phantom (Image Analysis, Columbia, KY) 
was placed under the samples in the scanner [23]. 

All samples were milled to the same height of 12 mm and a defined 
diameter of 11.6 mm, providing an aspect ratio (i.e., height to width 
ratio) of 1.03, avoiding buckling of the samples during the compression 
test [19]. 

To ensure fluids would not interfere with the digital image correla
tion (DIC) measurements, the bone marrow and other fluids were 
removed by centrifuging the specimens. 

2.1.2. Mechanical setup 
The specimens of each bone were divided into two equal groups, 

which were subjected to either uniaxial or confined compression. Uni
axial compression was performed by placing the specimens between two 
fixed custom-made parallel platens (Fig. 2b). 

The confined compression test was performed using a custom-made 
chamber and plunger. The inner diameter of the chamber was 11.60 mm 
and the plunger had an outer diameter of 11.58 mm. The measured 
diameters of the confined samples varied from 11.25 to 11.6 mm, which 
resulted in a mean tolerance of 0.10 mm (SD = 0.11). The compressive 
load was applied through a plunger with a ball joint connection to the 
load cell (Fig. 2c). 

2.1.3. Loading 
All specimens were subjected to a preload of 5–10 N to ensure uni

form contact between bone and platens. Subsequently, the specimens 
were subjected to a destructive compression load at a constant velocity 
of 5 mm/min (strain rate of 0.007 s− 1) up to 58% of strain. 

2.1.4. Data acquisition 
The DIC technique was used to measure bone strains in axial and 

transverse directions. The crosshead displacement of the testing ma
chine was calibrated against the DIC displacement to account for ma
chine compliance in the setup [24]. The deformations were obtained 
during the uniaxial compression test based on the DIC data to calculate 
the Poisson’s ratio. Images of the uniaxial compression test were 
continuously captured and deformations of the samples were calculated 
based on a custom-written Matlab script (Matlab 7.12.0 (R2018a), 
Mathworks, MA, USA) using automatic edge detection. It was assumed 
that the cylindrical bone samples deformed in an axisymmetric manner 
during the experiment. 

The force-displacement data of the compression test was converted 
to nominal stress-strain curves based on the original dimensions of the 
specimens. Three significant mechanical properties were measured 
(Fig. 3): 1. uniaxial compressive stiffness of the elastic region (Young’s 

Fig. 1. Bone sample preparation: (a) Removal of the proximal part parallel to 
the tibial plateau; (b) A vertical hollow drill was used to cut the specimens in 
the loading direction of the tibiae; (c) Superior view of the tibia after drilling. 
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modulus, E) 2. the yield point, based on a 0.2% strain offset (σ) (for both 
uniaxial and confined configurations) and, 3. the ultimate compressive 
stress. After omitting the initial toe region and the yielding region of the 
curve [6], the Young’s modulus (E) was computed based on the elastic 
portion of the stress-strain curve. The yield stress (σ) was calculated 
using a 0.2% offset from the elastic line, and the ultimate stress was 
defined as the peak of the stress-strain curve within the strain-range 
lower than 10%. Of these parameters, the Young’s modulus, yield 
stress, and Poisson’s ratio were applied to the FE model, while the ul
timate stress was measured only for comparison and validation of the 
computational results. 

2.2. Material parameter identification 

The Crushable Foam model with an isotropic hardening rule (ICF) is 
governed by the von Mises equivalent stress (q) and the hydrostatic 
pressure (p). The yield surface is an ellipse centered at the origin in the 
p–q stress plane. The yield surface extends along the pressure axis under 

the hydrostatic state (Fig. 4). 
The yield surface of the CF model with isotropic hardening (FICF) is 

given by: 

FICF =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q2 + a2p2

√
− B (1)  
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where B is the size of the q-axis of the yield ellipse, σuc is the absolute 
compressive strength under uniaxial loading and a  is the shape factor of 
the yield ellipse and is defined as: 

a =
3K
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√ (3)  

K =
σ0

uc
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(4)  

In these equations K is the compression yield stress ratio, and p0
c and σ0

uc 
are the initial yield stress under hydrostatic and uniaxial compression, 
respectively. The shape factor a  defines the relative magnitude of the 
axes of the yield ellipse in the p–q stress plane. In the particular case 
when a = 0, the crushable foam model corresponds to the von Mises 
yield criterion. Moreover, the flow potential (G) was chosen as [16,25]: 

G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

q2 + β2p2
√

(5)  

where β characterizes the principal axis lengths of the flow potential 
ellipse in the p–q stress plane and is correlated by the plastic Poisson’s 
ratio as: 

β =
3̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2vp

1 + vp

√

(6)  

These relations define the geometry of the isotropic CF yield criterion in 
the q–p plane. Additionally, to define the corresponding work hardening 
slope (H) of the evolving yield stress, the following linear relation was 
used [15]: 

H =
[ σe

σ̂ hσ +
(

1 −
σe

σ̂

)
hp

]
(7) 

Fig. 2. Experimental test setup: (a) The whole setup including the DIC system; (b) Detailed view of the uniaxial configuration; (c) The confined compression setup.  

Fig. 3. A typical uniaxial stress-strain curve of trabecular bone: 1-Toe region, 2- 
Elastic part, 3- Post-yield behavior, 4- plateau region, and 5-Hardening part. 
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where σe is the von Mises effective stress and σ̂ is the equivalent stress, 
and hσ and hp are the slope of the stress versus the logarithmic plastic 
strain curve under uniaxial and hydrostatic compression (see Appendix 
for more details). 

Using the dimensionlessK parameter and compressive strength as a 
function of ash density or BMD, the model can be applied to the cellular 
structure of bone. 

The initial yield stress under uniaxial conditions was measured by 
performing a compression test on the specimens. To obtain the initial 
hydrostatic yield point, triaxial compression test data is required. 
Considering Hooke’s Law and Poisson’s ratio of trabecular bone, the 
confined principal stresses can be converted to a hydrostatic state, and 
the yield data can be used to define the K parameter. 

Following the method implemented by Keyak et al. [6], the Young’s 
modulus (in uniaxial compression) and yield stress(both for uniaxial and 
confined compression) of all samples were computed through linear 
regression of the experimental data. Subsequently, another regression 
analysis was performed to correlate the calculated model parameters 
with BMD using Power-law distributions. The obtained correlations 
were evaluated using Pearson’s correlation coefficient (r), and the 
standard error of the estimate (SEE) was calculated to assess the accu
racy of each prediction. 

2.3. Numerical simulation 

In order to assign BMD values to the specimens, a computer model of 
a cylinder with a diameter of 11.5 mm and a height of 12 mm was 
created. The cylinder was then virtually placed in the QCT images at the 
position of the drilled specimens to assign the local Hounsfield units 
(HU). The obtained values were then converted to BMD using a cali
bration phantom. The diameter of the cylinder was defined slightly 
smaller (0.1 mm) than the actual size to reduce the error of positioning. 

FE analysis was performed to validate the outcomes of the numerical 
simulations against the experimental data for five specimens of each 
configuration. To accurately replicate the heterogeneous BMD distri
bution of the specimens, 3D models were created for these five speci
mens. The stress-strain response and yielding patterns of the samples in 
the simulation were selected to compare with the experimental results. 
The stress-strain response included compressive stiffness, yield stress, 
and post-yield behavior. The analysis was done in a displacement- 
controlled situation to mimic the experimental condition. A mesh 
convergence study was performed for a single BMD specimen with four 
different mesh sizes using 4-noded tetrahedral elements: 0.5, 1.0, 1.5, 
and 2 mm. The total strain energy of the model was selected as a target 
measure to determine the differences between mesh sizes. Convergence 
was assumed for a difference of less than 10% [26], which was achieved 

for the first three mesh sizes. Considering the mesh convergence results 
and the optimum mesh size for assigning the BMD values, the cylinder 
model with an element size of 1 mm was selected. Five specimens from 
each group with a different BMD, ranging from minimum to maximum 
values, were selected for the FE simulations, representing the whole 
BMD range of the specimens. 

Simulations were performed in Marc-Mentat (MSC Software Corpo
ration, Santa Ana, CA, USA) with a modified yield criterion for two 
loading conditions. The analysis was conducted in an implicit scheme 
with incremental loading and the large strain option was selected as the 
nonlinear procedure. The bone was considered as a heterogeneous ma
terial, and the stiffness values were applied through a compliance matrix 
for each element. A FORTRAN routine was combined with available 
user-subroutines of the Marc-Mentat Libraries [27] to define the 
isotropic CF criterion that was dependent on the BMD values. The al
gorithm consisted of the definition of (1) the compliance matrix and 
Hooke’s Law (HOOKLW), (2) the yield surface definition (ZERX), (3) the 
flow potential rule (NASSOC), and (4) the hardening rule (WKSLP). 

Computational implementation included a yield stress update algo
rithm in combination with a hydrostatic pressure dependency (Fig. 5). In 
this algorithm, first, the material parameters of the constitutive model 
were imported (ReadF). Next, the compliance matrix of stress-strain was 
defined based on Hooke’s Law (HOOKLW). Then, the ZERX subroutine 
was used to apply the yield criterion based on the current total stress. In 
case the yield surface value was smaller than zero (FICF < 0), the 
computation continued as elastic. In case of yielding, the algorithm 
would call a subroutine to define the flow direction for plasticity 
(NASSOC). Subsequently, the WKSLP was used to prescribe the corre
sponding hardening slope. Finally, the YIEL user subroutine was used to 
update the value of yield stress based on the current work hardening and 
the volume change. The analysis was continued iteratively until the 
solution converged. This approach allowed for considering the 
hardening-softening behavior of the trabecular bone structure, which 
led to a distinctive update of the yield surface. 

3. Results 

3.1. Experiment 

The force-displacement data were collected for 59 of the 62 speci
mens; no data were obtained for three samples. Two specimens were 
excluded due to structural failure after centrifuging, and one was 
crushed under the preconditioning load. Thirty-one bone specimens 
were tested under uniaxial compression and twenty-eight under 
confined compression. 

Typical diagrams of the stress-strain response of trabecular bone 

Fig. 4. The isotropic CF yield surface and its development, including two representative loading paths, uniaxial compression, and confined compression. The 
equation of q0

uc (equiavalent stress of Uniaxial Compression) and q0
cc (equiavalent stress of Confined Compression) were governed based on Hooke’s Law for 

isotropic materials. 
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samples in the two configurations are shown in Fig. 6a and b. 

3.2. Material parameters 

Statistical analyses showed significant nonlinear correlations for the 
Young’s modulus (E) (r = 0.748, p < 0.001 and SEE = 72.17) (Fig. 7a), 
yielding stress in the uniaxial compression (r = 0.883, p < 0.001 and 
SEE = 0.951) (Fig. 7b) and yielding stress in the confined compression (r 
= 0.921, p < 0.001 and SEE = 0.872) (Fig. 7c) with the BMD values. 

The obtained power-law equations for the ICF constitutive model are 
reported in Table 1. The correlation between mechanical properties of 
the bone and BMD values have been characterized by the K parameter 
and its corresponding plastic Poisson’s ratio. Additionally, the experi
mental mean values of the measured parameters are also given in this 
table. 

3.3. Numerical simulation 

The calculated BMD values ranged from 26 mg/cc to 207 mg/cc for 
the uniaxial samples and 27 mg/cc to 195 mg/cc for the confined 
samples. The experimental data results, coupled with the numerical 
simulation outcomes of five selected samples are shown in Figs. 8a, b 
and 9a, b for uniaxial and confined configuration, respectively. 

In the uniaxial configuration, the numerically obtained stress-strain 
curves were very similar to the experimental data. The model accu
rately replicated the post-yield trend of the specimens in uniaxial 
compression. In the confined configuration, as can be seen in Fig. 9, the 
first part of the stress-strain curve, including the yield and ultimate 
stress, was consistently simulated in the FE analysis. For three speci
mens, the experimental results showed a plateau region in the stress- 
strain curve after 15% strain and started to increase, while in the 

Fig. 5. Computational algorithm of numerical simulation, including all the necessary subroutines to be called from available Marc-Mentat routines.  

Fig. 6. Typical diagram of the nominal stress-strain response: (a) The uniaxial compression (BMD value of 187 mg/cc); (b) The confined compression (BMD value of 
195 mg/cc). 
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other two curves, the ultimate stress was followed by a drop and then an 
increase in stress. The numerical simulations could capture the stress 
drops of the two specified samples; however, the amount of this drop 
was underestimated compared to the experimental results. 

Numerically determined, the ultimate compressive stress of the 
uniaxial and confined configuration was highly accurate compared to 
the experimental values (Fig. 10a and b). Note that the ultimate stress of 

the experimental data was not included as input for the CF material 
model and was computed based on the FE algorithm as a post-yield 
response. 

The distribution of the equivalent plastic strain (EPS) in the uniaxial 
configuration is illustrated in Fig. 11 as a representation of plastic 
yielding. This computed distribution of plastic strain in the FE analysis 
compares relatively well with the deformations observed in the 
experiments. 

4. Discussion 

In this study, we assessed the mechanical response of human 
trabecular bone under compressive loading conditions through experi
mental and numerical simulations. The load was applied in uniaxial and 
confined configurations to characterize the parameters of a constitutive 
crushable foam model that was dependent on BMD. QCT-based FE 
simulations of trabecular bone specimens were compared against 
experimental results. 

The Young’s modulus and yield stress measured in the uniaxial 
configuration of the tibial trabecular bone varied from 31 MPa to 458 
MPa and 0.53 MPa to 7.59 MPa, respectively. These values are compa
rable to Young’s modulus (8–1310 MPa) and yield stress (0.83–24 MPa) 
reported in previous studies [20,28-30]. The measured values of the 
yield stress under confined compression in the current study (0.16–9.02 
MPa) were within the range of 0.24–31.59 MPa reported by Carter et al. 
[31]and Charleroi et al. [32]. 

Fig. 7. The regression analyses of the measured experimental data: (a) The Youngs’s modulus; (b) Yield stress in the uniaxial compression; (c) Yield stress in the 
confined compression. 

Table. 1 
The empirical power relation of the material parameters based on the BMD value 
and, the experimental mean values of the measured parameters.  

Mechanical 
properties 

Empirical 
equation 

BMD value 
range g/cc 

Experimental mean 
value (max-min) 

Compressive stiffness 
(E) (MPa) 

2131× ρ1.128
BMD  0.026–0.207 168.61 ± 104.35 (31 

− 458) 
Yield Stress in 

uniaxial condition 
(MPa) 

86.73× ρ1.519
BMD  0.026–0.207 3.01 ± 2.05 (0.53 −

7.59) 

Yield Stress in 
confined condition 
(MPa) 

117.5× ρ1.691
BMD  0.027–0.195 2.09 ± 2.2 (0.16 −

9.02) 

K parameter 1.63× ρ− 0.162
BMD  >0.033 – 

Elastic Poisson’s ratio Constant 0.026–0.207 0.146 ± 0.067 
(0.001 − 0.33) 

Plastic Poisson’s ratio 3 − K2
(BMD)

6
*  

0.033–0.207 0.133 ± 0.055 
(0.016 − 0.27) 

(*) this equation was adapted from [15]. 

N. Soltanihafshejani et al.                                                                                                                                                                                                                     



Medical Engineering and Physics 96 (2021) 53–63

59

Regression analysis showed a strong correlation (p < 0.001) of three 
measured parameters (compressive stiffness, uniaxial yield stress, and 
confined yield stress) with BMD values. The values derived here 
(Table 1) had a good agreement with reported values of the mechanical 

properties of proximal tibial specimens in the review study by Keaveny 
et al. [1]. However, our results were quite different from those of Keyak 
et al. [6], who found a Young modulus ranging from 135 MPa to 1200 
MPa, and yield stress ranging from 1.36 to 9.8 MPa. This difference may 

Fig. 8. The results of the uniaxial compression: (a) The experimental results; (b) The simulation results with the ICF model.  

Fig. 9. The results of the confined compression: (a) The experimental results; (b) The simulation results with the CF model.  

Fig. 10. comparison of independent value of the ultimate stress in simulations with experimental results: (a) The uniaxial compression; (b) the confined 
Compression. 
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be due to several factors. First, the average stiffness of the cadaveric 
bone samples in the study by Keyak et al. [6] was much higher compared 
to our samples, which may lead to different regression results. The 
second factor may be related to differences in the experimental setup. In 
the study of Ketak et al., the displacement was applied at a rate of 9 
mm/min (strain rate of 0.01 s− 1) on wet bone samples (including bone 
marrow), while in the current study, the displacement velocity was 5 
mm/min (strain rate of 0.007 s− 1), and liquids (bone marrow and fat) 
were removed from the samples before testing. However, it has been 
stated that a strain rate of less than 10 s− 1 should not affect the measured 
stiffness of the samples, with or without the bone marrow [31,33]. 

Applying the material models to FE simulations of trabecular bone in 
an accurate manner is a challenging procedure [8]. Many attempts have 

been made to apply constitutive continuum models to trabecular bone, 
including softening Von Mises (sVM), Drucker-Prager (DP), Extended 
Drucker-Prager (EDP), Mohr-Coulomb (MC), and Crushable Foam (CF) 
models [9-14,16,17]. For constitutive modeling of cellular structure, it 
has been stated that the hydrostatic and deviatoric stresses should be 
considered together in FE analysis to have an accurate response [8,16]. 
However, among the models mentioned above, only the CF and EDP are 
functions of hydrostatic and deviatoric stress. 

The present study is the first attempt to characterize the material 
parameters of the ICF model dependent on the BMD. Several attempts 
have been made previously to calibrate the CF model for human [7,17] 
and for synthetic [18,34] bone, using a single value for the K parameter. 
A simplified form of a calibrated CF model (with a constant value for the 

Fig. 11. Undeformed (left) and deformed (right) images of the uniaxial compression experiments for five different specimens. The black circles show the regions of 
large deformation in the experimental samples. The simulated equivalent plastic strain (EPS) is shown in the center. The location of the maximum values of EPS in the 
numerical samples was seen at the locations where large deformations occurred in the experimental samples. Note: positioning of the cutting plane (in the numerical 
results) can differ from the actual orientation of the specimen images. 
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corresponding parameters) was applied to femoral bones and vertebral 
bodies by Kinzl et al. [17]. They showed accurate results for the pre
diction of ultimate strength, as well as the damage distribution. In 
contrast to the current study, they did not include hardening-softening 
equations in their CF model. Therefore the computed 
load-displacement curves in their study were only valid until the ulti
mate force. The CF model that was used in the study of Kelly et al. [7] to 
investigate the behavior of vertebral bodies showed a good agreement 
with experimental results. However, the μCT model in their study did 
not allow for using a realistic 3D geometry in a macroscale analysis. The 
values for the K parameter reported in these previous studies were in the 
range of 0.85 to 1.33, which is comparable with the values in the current 
study. 

As shown in Fig. 8, using the ICF model, the mechanical behavior of 
trabecular bone was adequately reproduced in numerical simulations 
and captured the crucial points of the stress-strain curve under 
compression. The measured initial yield stress and Young’s modulus 
were already applied to the FE model as input data and had a strong 
correlation with the numerical outcomes. Interestingly, although no 
parameters from the post-yield region of the experiment were consid
ered as input data, the numerical simulation could accurately replicate 
the plastic behavior of the specimens (Fig. 8b). The post-yield region of 
the stress-strain response (ultimate stress point, softening part, plateau 
region, and the hardening part) could be quantified well in the simu
lation results. Given the three mechanical parameters as the initial input 
for the simulations, the ultimate stress was computed in FE simulations, 
which were very similar to the experimental results (Fig. 10). 

Considering the confined compression, Kelly and McGarry [16] 
showed a decreasing stress after the peak point in their bovine CF model, 
while their experimental results showed an increasing stress after the 
peak point. In the current study, the numerical outcomes of the confined 
simulations showed a good agreement with the experimental results up 
to 15% strain (Fig. 9). After this strain level, the computed stress 
increased relative to experimental values due to the overestimated 
hardening rule. According to the study of Yu et al. [35], for a realistic FE 
simulation of confined compression, it is necessary to obtain sufficient 
modifications for the constitutive formulation. They stated the 
hardening-softening rule must be dependent on the confined pressure, 
and the flow rule must be dependent on confinement level and incre
mental rate. Therefore, in order to apply these modifications to a FE 
analysis, a considerable amount of experimental data under different 
levels of confinement is required. If these data are not included in the 
plasticity model, the simulations of confined configurations lead to an 
overestimation of the hardening rule (as is the case in the current study) 
or softening rule (e.g. the study of Kelly and McGrey [16]). 

Since the material properties in the models were based on the actual 
BMD, the localized plastic behavior resulted in a good prediction of the 
yielding pattern. The deformations of the experimental specimens under 
uniaxial compression were qualitatively similar to the plastic strain 
distributions seen in the simulations (Fig. 11). By considering the flow 
potential rule of the CF plasticity model (Eq. (5)), the direction of the 
plastic strain rate vector was updated independently of the yield surface. 
Describing the differential changes of the plastic strain component based 
on the flow potential rule allowed for realistic deformations of the 
trabecular bone. Therefore, identifying the plastic zones with the 
maximum values of the equivalent plastic strain in numerical simula
tions could indicate the failure pattern of the experimental specimens. 

Kelly and McGarry [16] applied the DP, MC, sVM, and CF model to 
simulate the compression situation of bovine trabecular bone. They 
demonstrated that none of these constitutive models could capture the 
confined compression response of trabecular bone, except for the CF 
model. The parameters K and vp in their study were calibrated against 
the average stress-strain curve of the experimental results. Therefore, 

these parameters are only dependent on one specific BMD value of 
bovine bone and not on the entire range. In the study of Schulze et al. 
[18], it was shown that the CF plasticity model with an isotropic hard
ening rule resulted in an accurate prediction of deformations in syn
thetic bone. Considering the fact that the CF model mainly depends on 
the K parameter (the ratio of uniaxial yield over hydrostatic yield), they 
calibrated their model by assuming equality of all the yield ratios and set 
this parameter equal to 1. However, the current study shows that a 
variable value of the K parameter results in a more accurate response of 
the cellular structure of trabecular bone. 

Although this study shows good agreement between the experiments 
and the numerical simulations, there are some limitations. Minor 
experimental errors are difficult to avoid. These errors may be related to 
the end effects of the platens, machine compliance, sample preparation, 
structural damage of specimen, and the aspect ratio of the specimen’s 
geometry, which have been reported previously as standard experi
mental errors [19]. Also, the perfect alignment of the bone samples with 
the cutting direction and axial loading remains challenging, due to the 
complex structure of the trabecular bone. Regarding the numerical 
simulation, in the uniaxial configuration, the model could accurately 
predict the mechanical response of the trabecular bone. However, in the 
confined configuration, the stress was overestimated after 15% strain. 
The isotropic hardening rule of the CF model contained 
pressure-dependent parameters. However, according to Yu et al. [35], to 
simulate pure confinement in FE analysis, the hardening-softening rule 
should be dependent on the confining pressure and requires sufficient 
experimental input, which was lacking in the current study. Further 
experimental tests and simulations of the confined situation are required 
to further improve the CF model. Although it is fundamental to perform 
hydrostatic tests (or confined tests in this study) to obtain the CF pa
rameters, the confinement boundary condition in this level is not 
necessarily a correct representation of the physiological conditions in 
human bone. In reality, collapsing bone is surrounded by other 
deformable bone (both trabecular and cortical bone). Hence, a realistic 
mechanical response of the post-yield behavior (and its modeling) will 
probably be somewhere between the uniaxial and confined conditions 
where the confining level depends on the stiffness properties of the 
surrounding bone. 

5. Conclusion 

In the present study, mechanical properties of human trabecular 
bone were experimentally determined dependent on BMD. Using these 
properties, an isotropic crushable foam model was developed. This 
model realistically predicted the post-yield behavior of trabecular bone 
under uniaxial conditions. Also, it could reproduce the pure confined 
compression until 15% of strain. The CF model can properly simulate 
orthopaedic device performance, particularly focusing on bone collapse 
due to the local overload around orthopaedic implants. 
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Appendix 

The slope of the total (universal) stress versus the plastic strain is defined as the work hardening slope (H) of the material. It is required to calculate 
the current true stress-strain curve in the plastic region to obtain the hardening slope. By assuming a direct connection between the material density 
change and the volumetric plastic strain, hσ and hp were specified. This specification allowed for providing the work-hardening slope as a function of 
the equivalent stress vs. equivalent plastic strain. The coefficient hσ can be defined as the slope of the Cauchy stress versus logarithmic plastic strain 
(εp) curve in uniaxial compression (∂σuc

∂εp ). Volumetric plastic strain (εp
vol) indicates the permanent change in the volume of an element and can be used to 

describe the yield stress, which directly defines the yield surface Eqs. (1) and ((2)). 

σuc = c(ρBMD)
d
= c

(
M

V0
(
1 + εp

vol

)

)d

=
c(ρBMD0)

d

(
1 + εp

vol

)b =
σ0

uc
(
1 + εp

vol

)b (8)  

where c and d are experimental constants, ρBMD is the density of an element, M is the total mass and V0 is the primary volume. The relation between εp 

and εp
vol can be derived based on the reported equations in Deshpande and Fleck [15], by defining the ratio of q over p as R: 

εp =
R
α2εp

vol (9)  

σuc =
σ0

uc
(

1 + α2

R εp

)b (10)  

consequently, the following is obtained: 

∂σuc

∂εp =
− α2cd(ρBMD0)

d

(R + α2εp)
d+1 (11)  

in which εp is calculated each increment, and other parameters are given as input data. The same procedure was carried out for hp by converting the 
confined compression stress (σcc) to the hydrostatic stress (p) using Hooke’s Law for isotropic material: 

p = −
σcc

3

(
1 + ve

1 − ve

)

. (12)  
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[25] Dassault-Systèmes A. Standard analysis user’s manual. Providence, RI, USA: 
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