887 research outputs found

    The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores

    Full text link
    The basic structure of the solar system is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r<ricer<r_{ice} and r>ricer>r_{ice}, where ricer_{ice} is the snowline heliocentric distance), due to ice sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case, objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk. Within the snowline these bodies would reach approximately the mass of Mars while beyond the snowline they would grow to ∌20\sim 20 Earth masses. The results may change quantitatively with changes to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of protoplanets appears robust, provided that there is enough turbulence in the disk to prevent the sedimentation of the silicate grains into a very thin layer.Comment: In press in Icaru

    Universal and non-universal behavior in Dirac spectra

    Get PDF
    We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.Comment: LATTICE98(confine), 9 pages, 11 figure

    Spectrum of the SU(3) Dirac operator on the lattice: Transition from random matrix theory to chiral perturbation theory

    Get PDF
    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.Comment: 8 pages, RevTeX, 15 .eps figure

    Can we do better than Hybrid Monte Carlo in Lattice QCD?

    Get PDF
    The Hybrid Monte Carlo algorithm for the simulation of QCD with dynamical staggered fermions is compared with Kramers equation algorithm. We find substantially different autocorrelation times for local and nonlocal observables. The calculations have been performed on the parallel computer CRAY T3D.Comment: Talk presented at LATTICE96(algorithms), LaTeX 3 pages, uses espcrc2, epsf, 2 postscript figure

    Random Matrix Theory, Chiral Perturbation Theory, and Lattice Data

    Get PDF
    Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at \beta=2.0 and 2.2.Comment: LaTeX, 12 pages, 7 .eps figure

    Random Matrix Theory and Chiral Logarithms

    Get PDF
    Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m*log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).Comment: LaTeX (elsart.cls), 9 pages, 6 .eps figures, added reference, altered discussion of Eq.(9

    Beyond the Thouless energy

    Get PDF
    The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random matrix theory (RMT) up to the Thouless energy Ec∝1/VE_c\propto 1/\sqrt{V}, where VV is the physical volume. For somewhat larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities there is an intermediate energy regime, roughly 1/V<E<1/V1/V<E<1/\sqrt{V}, where the results of RMT and chPT agree with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of lattice sizes and coupling constants. In deriving the predictions of chPT, it is important to take into account only those symmetries which are exactly realized on the lattice.Comment: LATTICE99(Theoretical Developments), 3 pages, 3 figures, typo in Ref. [10] correcte

    Small eigenvalues of the SU(3) Dirac operator on the lattice and in Random Matrix Theory

    Get PDF
    We have calculated complete spectra of the staggered Dirac operator on the lattice in quenched SU(3) gauge theory for \beta = 5.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigenvalue, and the two-point spectral correlation function are analyzed. We find the expected agreement of the lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain energy scale, the Thouless energy. The deviations from the universal predictions are determined using the disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected from theoretical arguments making use of the Gell-Mann--Oakes--Renner relation.Comment: REVTeX, 5 pages, 4 figure

    The solar abundance problem and eMSTOs in clusters

    Full text link
    We study the impact of accretion from protoplanetary discs on stellar evolution of AFG-type stars. We use a simplified disc model computed using the Two-Pop-Py code that contains the growth and drift of dust particles in the protoplanetary disc. It is used to model the accretion scenarios for a range of physical conditions of protoplanetary discs. Two limiting cases are combined with the evolution of stellar convective envelopes computed using the Garstec stellar evolution code. We find that the accretion of metal-poor (gas) or metal-rich (dust) material has a significant impact on the chemical composition of the stellar convective envelope. As a consequence, the evolutionary track of the star diverts from the standard scenario predicted by canonical stellar evolution models, which assume a constant and homogeneous chemical composition after the assembly of the star has finished. In the case of the Sun, we find a modest impact on the solar chemical composition. Accretion of metal-poor material indeed reduces the overall metallicity of the solar atmosphere, and it is consistent, within the uncertainty, with the solar Z reported by Caffau et al. (2011), but our model is not consistent with the measurement by Asplund et al. (2009). Another effect is the change of the position of the star in the colour-magnitude diagram. We compare our predictions to a set of open clusters from the Gaia DR2 and show that it is possible to produce a scatter close to the turn-off of young clusters that could contribute to explain the observed scatter in CMDs. Detailed measurements of metallicities and abundances in the nearby open clusters will provide a stringent observational test of our proposed scenario.Comment: 10 pages, 7 figures, 1 table. Accepted for publication in A&
    • 

    corecore