49 research outputs found

    Histones/DNA Ratio in Young and Old Root Meristems of Triticum Durum Caryopses

    Get PDF
    SUMMARYThe histones/DNA ratio has been calculated in the 2C nuclei from the primary root meristems of young and old caryopses of Triticum durum. In a first experiment young and old caryopses taken from different crops were considered in one and the same trial, at the same time. In a second experiment young and old caryopses taken from the very same crop were considered in different trials at different times. In both cases 2C meristematic nuclei of old caryopses show a higher amount of DNA bound histones and smaller average nuclear area as compared to 2C meristematic nuclei of young caryopses. The possible significance of this variations in histones/DNA ratio and in nuclear areas detected in the study is discussed

    Changes in Histones/DNA Ratio in Scutellum Nuclei During Ageing of Triticum Durum Caryopses

    Get PDF
    SUMMARYColumnar epithelium and parenchyma cells of the scutellum of Triticum durum caryopses show different quiescence models: while epithelium cells display a DNA content per nucleus of 2C, the parenchyma cells undergo poli- ploidization. Furthermore, in old seeds, the distribution of the histones/DNA ratio shifts much more in parenchyma cells than in columnar epithelium cells. It may thus be concluded that different tissues of the same organ (scutellum) are affected in a different way by damaging effect of ageing factors

    Variation of Histone/DNA Ratio in the Embryonic Areas of Triticum Durum Aged Seeds

    Get PDF
    SUMMARYThe histone/DNA ratio has been estimated independently for each embryonic area in young and old caryopses of Triticum durum. As the ratio is already quite different in the single embryo areas of over dormant young seeds, it can be suggested that nuclear conditions at ripening time influence the response of the cell populations which undergo senescence. Furthermore, when old seeds are considered, it can be clearly observed that the single areas of the embryo exibit specific increases in the histone/DNA ratio. These observations are discussed in terms of a heterogeneity in the ageing process and loss of metabolic activity and regulatory control in the embryos of aged seeds

    Cytophotometric Analyses and in Vitro Culture Test in the Embryo First Node of Old Triticum Durum Caryopses

    Get PDF
    SUMMARYThe nuclei of the first node embryo of Triticum durum show the same amount of histone bound to DNA in young and in aged seeds in line with earlier findings of remaining metabolic activity. Furthermore the explants of the first node from the old seeds analyzed, are still able to generate calli and plantlets and might be usefull to recover embryos from aged seeds

    Peach [Prunus persica (L.) Batsch] KNOPE1, a class 1 KNOX orthologue to Arabidopsis BREVIPEDICELLUS/KNAT1, is misexpressed during hyperplasia of leaf curl disease

    Get PDF
    Class 1 KNOTTED-like (KNOX) transcription factors control cell meristematic identity. An investigation was carried out to determine whether they maintain this function in peach plants and might act in leaf curliness caused by the ascomycete Taphrina deformans. KNOPE1 function was assessed by overexpression in Arabidopsis and by yeast two-hybrid assays with Arabidopsis BELL proteins. Subsequently, KNOPE1 mRNA and zeatin localization was monitored during leaf curl disease. KNOPE1 and Arabidopsis BREVIPEDICELLUS (BP) proteins fell into the same phyletic group and recognized the same BELL factors. 35S:KNOPE1 Arabidopsis lines exhibited altered traits resembling those of BP-overexpressing lines. In peach shoot apical meristem, KNOPE1 was expressed in the peripheral and central zones but not in leaf primordia, identically to the BP expression pattern. These results strongly suggest that KNOPE1 must be down-regulated for leaf initiation and that it can control cell meristem identity equally as well as all class 1 KNOX genes. Leaves attacked by T. deformans share histological alterations with class 1 KNOX-overexpressing leaves, including cell proliferation and loss of cell differentiation. Both KNOPE1 and a cytokinin synthesis ISOPENTENYLTRANSFERASE gene were found to be up-regulated in infected curled leaves. At early disease stages, KNOPE1 was uniquely triggered in the palisade cells interacting with subepidermal mycelium, while zeatin vascular localization was unaltered compared with healthy leaves. Subsequently, when mycelium colonization and asci development occurred, both KNOPE1 and zeatin signals were scattered in sectors of cell disorders. These results suggest that KNOPE1 misexpression and de novo zeatin synthesis of host origin might participate in hyperplasia of leaf curl disease

    Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25

    Get PDF
    Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes

    Identifying volatile and non‐volatile organic compounds to discriminate cultivar, growth location, and stage of ripening in olive fruits and oils

    Get PDF
    BACKGROUND: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables. Key metabolites include lipids, phenolics, and a wide range of volatile organic compounds (VOCs), which provide the olives and oil with their characteristic flavor. Here we aim to identify markers that are able to discriminate between cultivars, that can identify growth location, and can discriminate stages of fruit maturity. ‘Nocellara messinese’ and ‘Carolea’ olive fruits were grown at three locations differing in altitude in Calabria, Italy, and harvested at three stages of maturity. Oil was analyzed from the two most mature stages. RESULTS: Nine and 20 characters discriminated all fruit and oil samples respectively, and relative abundance of two fatty acids distinguished all oils. Whole VOC profiles discriminated among the least mature olives, and oil VOC profiles discriminated location and cultivar at both stages. Three VOCs putatively identified as hexanal, methyl acetate, and 3-hexen-1-ol differentiated all samples of oils from the most mature fruit stage. CONCLUSION: The results confirm that interactions of location, cultivar and fruit maturity stage are critical for the overall pattern of aroma compounds, and identify potential markers of commercial relevance. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage

    Get PDF
    Peaches have a short shelf life and require chilling during storage and transport. Peach aroma is important for consumer preference and determined by underlying metabolic pathways and gene expression. Differences in aroma (profiles of volatile organic compounds, VOCs) have been widely reported across cultivars and in response to cold storage. However, few studies used intact peaches, or used equilibrium sampling methods subject to saturation. We analysed VOC profiles using TD‑GC × GC‑ToF‑MS and expression of 12 key VOC pathway genes of intact fruit from six cultivars (three peaches, three nectarines) before and after storage at 1 °C for 7 days including 36 h shelf life storage at 20 °C. Two dimensional GC (GC × GC) significantly enhances discrimination of thermal desorption gas chromatography time‑of‑flight mass spectrometry (TD‑GC‑ToF‑MS) and detected a total of 115 VOCs. A subset of 15 VOCs from analysis with Random Forest discriminated between cultivars. Another 16 VOCs correlated strongly with expression profiles of eleven key genes in the lipoxygenase pathway, and both expression profiles and VOCs discriminated amongst cultivars, peach versus nectarines and between treatments. The cultivar‑specific response to cold storage underlines the need to understand more fully the genetic basis for VOC changes across cultivars

    In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control

    Get PDF
    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control

    Fruitomics: The importance of combining sensory and chemical analyses in assessing cold storage responses of six peach (Prunus persica L. Batsch) cultivars

    Get PDF
    Cold storage is used to extend peach commercial life, but can affect quality. Quality changes are assessed through the content of nutritionally relevant compounds, aroma, physical characters and/or sensorially. Here, six peach and nectarine cultivars were sampled at commercial harvest and after 7 days of 1 °C storage. A trained panel was used to evaluate sensorial characters, while carotenoids, phenolics, vitamin C, total sugars, and qualitative traits including firmness, titrable acidity and soluble solid content were integrated with volatile organic compound (VOC) analysis previously reported. The different analyses reveal interesting patterns of correlation, and the six cultivars responded differently to cold storage. Sensory parameters were correlated with 64 VOCs and seven intrinsic characters. Acidity, firmness, and 10 VOCs were strongly negatively correlated with harmony and sweetness, but positively correlated with bitterness, astringency, and crunchiness. In contrast, Brix, b-carotene, and six VOCs were positively correlated with harmony and sweetness
    corecore