71 research outputs found

    Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts

    Get PDF
    It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation. Mechanical stimulation coupled with chemical stimulation also revealed an increase in FN fibrils around the cell periphery. Complimentary to this, fibroblasts exposed to fluid shear stress structurally rearranged pre-coated surface FN, but unstimulated and stretched cells did not. These results show that mechanical stimulation directly affected FN reorganization and recruitment, despite perturbation by chemical stimulation. Our findings will help elucidate the mechanisms of FN biosynthesis and organization by furthering the link of the role of mechanics with FN

    Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

    Get PDF
    The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC

    Neurogenic mechanisms in bladder and bowel ageing

    Get PDF
    The prevalence of both urinary and faecal incontinence, and also chronic constipation, increases with ageing and these conditions have a major impact on the quality of life of the elderly. Management of bladder and bowel dysfunction in the elderly is currently far from ideal and also carries a significant financial burden. Understanding how these changes occur is thus a major priority in biogerontology. The functions of the bladder and terminal bowel are regulated by complex neuronal networks. In particular neurons of the spinal cord and peripheral ganglia play a key role in regulating micturition and defaecation reflexes as well as promoting continence. In this review we discuss the evidence for ageing-induced neuronal dysfunction that might predispose to neurogenic forms of incontinence in the elderly

    Sex-related differences and age of peak performance in breaststroke versus freestyle swimming

    Get PDF
    BACKGROUND: Sex-related differences in performance and in age of peak performance have been reported for freestyle swimming. However, little is known about the sex-related differences in other swimming styles. The aim of the present study was to compare performance and age of peak performance for elite men and women swimmers in breaststroke versus freestyle. METHODS: Race results were analyzed for swimmers at national ranked in the Swiss high score list (during 2006 through 2010) and for international swimmers who qualified for the finals of the FINA World Swimming Championships (during 2003 through 2011). RESULTS: The sex-related difference in swimming speed was significantly greater for freestyle than for breaststroke over 50 m, 100 m, and 200 m race distances for Swiss swimmers, but not for FINA finalists. The sex-related difference for both freestyle and breaststroke swimming speeds decreased significantly with increasing swimming distance for both groups. Race distance did not affect the age of peak performance by women in breaststroke, but age of peak performance was four years older for FINA women than for Swiss women. Men achieved peak swimming performance in breaststroke at younger ages for longer race distances, and the age of peak swimming performance was six years older for FINA men than for Swiss men. In freestyle swimming, race distance did not affect the age of peak swimming performance for Swiss women, but the age of peak swimming performance decreased with increasing race distance for Swiss men and for both sexes at the FINA World Championships. CONCLUSIONS: Results of the present study indicate that (i) sex-related differences in swimming speed were greater for freestyle than for breaststroke for swimmers at national level, but not for swimmers at international level, and (ii) both female and male swimmers achieved peak swimming speeds at younger ages in breaststroke than in freestyle. Further studies are required to better understand differences between trends at national and international levels

    Inflammation, heat shock proteins, and type 2 diabetes

    No full text
    We propose that type 2 diabetes results from a vicious cycle of metabolically induced inflammation, impaired insulin responsiveness, and subsequent loss of homeostatic signaling. A crucial and previously under-recognized event contributing to this loss of homeostasis is a reduction in heat shock proteins (HSPs, or stress proteins). The central causal pathways of this cycle are the following: (a) obesity-driven inflammation promotes insulin resistance; (b) impaired insulin signaling in turn reduces the expression of HSPs, leaving tissues vulnerable to damage and allowing the accumulation of harmful proteins aggregates; and (c) resulting damage to the pancreatic beta-cell leads to further losses in insulin signaling, while a decline in anti-inflammatory HSPs allows inflammation to expand unhindered. Obesity and sedentary lifestyle perpetuate this cycle, while dieting and exercise forestall it by raising HSPs, reducing inflammation, and improving insulin signaling. Because HSP expression carries substantial metabolic costs, it is likely that an evolutionary history of high activity levels and resource scarcity selected for more conservative HSP expression than is appropriate for our current environment of caloric abundance
    corecore